Avances recientes en el diseño de nanoemulsiones: conceptos y tendencias sobre nanocosmeticos

Autores/as

  • Ruth Monroy Laboratorio de Petróleo, Hidrocarburos y derivados (PHD), Facultad Experimental de Ciencias y Tecnología FACYT. Universidad de Carabobo. Valencia, Venezuela https://orcid.org/0000-0003-2523-5511
  • Juan Pereira Laboratorio de Petróleo, Hidrocarburos y derivados (PHD), Facultad Experimental de Ciencias y Tecnología FACYT. Universidad de Carabobo. Valencia, Venezuela https://orcid.org/0000-0003-4600-726X

DOI:

https://doi.org/10.54139/revinguc.v27i3.146

Palabras clave:

nanoemulsiones, PIT (Por sus siglas en inglés, temperatura de inversión de fase), PIC (Por sus siglas en inglés, composición de inversión de fase), administración transdérmica, emulsión espontánea

Resumen

La industria cosmética ha experimentado un auge en los últimos años como uno de los mercados que tiene un enorme potencial de crecimiento. Los productos cosméticos que contienen nanoemulsiones (NE), como portadores de compuestos activos, pueden moverse a través del estrato córneo, promoviendo la liberación de activos hacia la dermis. Los ingredientes activos lipofílicos que presentan mayor interés en el cuidado de la piel son: la vitamina E, el licopeno, carotenoides, los polifenoles, o coenzima Q-10 o simplemente las fragancias no alcohólicas. El pequeño tamaño de las gotas de la fase dispersa es otro factor que confiere características fisicoquímicas y biológicas importantes. Impide la floculación y la coalescencia de las nanoemulsiones, y los movimientos brownianos son suficientes para superar la sedimentación de las gotas por gravedad. Además, el tamaño reducido de las gotas también proporciona una mejor deposición sobre la piel y penetración, lo que permite una entrega eficiente de ingredientes activos en comparación con los vehículos convencionales. En esta revisión se destacan algunas contribuciones científicos-tecnológicas importantes, se presenta una revisión documental sobre los métodos de elaboración de nanoemulsiones, tanto de alta energía como de baja energía, así como los avances y desarrollos resaltantes sobre nanocosméticos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

R. Ribeiro, S. Barreto, E. Ostrosky, P. Da RochaFilho, L. Veríssimo, and M. Ferrari, “Production and characterization of cosmetic nanoemulsions containing Opuntia ficusindica (L.) mill extract as moisturizing agent,” Molecules, vol. 20, no. 2, pp. 2492–2509, 2015.

F. Silva, E. Ricci-Junior, and C. Mansur, “Nanoemulsions containing octyl methoxycinnamate and solid particles of TiO2: preparation, characterization and in vitro ealuation of the solar protection factor,” Drug Development and Industrial Pharmacy, vol. 39, pp. 1378–1388, 2013.

S. Samson, M. Basri, H. Masoumi, E. Malek, and R. Karjiban, “An artificial neural network based analysis of factors controlling particle size in a virgin coconut oil-based nanoemulsión system containing copper peptide,” PLoS ONE, vol. 11, no. 7, pp. 1–15, 2016.

O. Sonneville-Aubrun, M. Yukuyama, and A. Pizzino, Nanoemulsions: Formulation, Applications, and Characterization, 1st ed. Academic Press, 2018, ch. Application of Nanoemulsions in Cosmetics, pp. 345– 375.

M. El-Aasser, C. Lack, Y. Choi, T. Min, J. Vanderhoff, and F. Fowkes, “Interfacial aspects of miniemulsions and miniemulsion polymers,” Colloids and Surfaces, vol. 12, pp. 79–97, 1984.

D. Qi, Z. Cao, and U. Ziener, “Recent advances in the preparation of hybrid nanoparticles in miniemulsions,” Advances in Colloid and Interface Science, vol. 211, pp. 47–62, 2014.

S. Manickam, K. Sivakumar, and C. Heng Pang, “Investigations on the Generation of Oil-in-Water (O/W) Nanoemulsions through the Combination of Ultrasound and Microchannel,” Ultrasonics Sonochemistry, vol. 69, p. 105258, 2020.

T. Forster, Surfactant Science Series. New York: Marcel Dekker, 1997, vol. 68, ch. Surfactants in cosmetics.

A. Forgiarini, J. Esquena, C. González, and C. Solans, “Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation,” in Trends in Colloid and Interface Science XIV. Progress in Colloid and Polymer Science, V. Buckin, Ed. Berlin, Heidelberg: Springer, 2000, vol. 115.

C. Solans and I. Solé, “Nano-emulsions: Formation by low-energy methods,” Current Opinion in Colloid & Interface Science, vol. 17, no. 5, pp. 246–254, 2012.

N. Anton, S. Akram, and T. Vandamme, Nanoemulsions: Formulation, Applications, and Characterization, 1st ed. Academic Press, 2018, ch. Transitional Nanoemulsification Methods, pp. 77–110.

P. Taylor and R. H. Ottewill, “The formation and ageing rates of oil-in-water miniemulsions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 88, no. 2–3, pp. 303–316, 1994.

P. Taylor, “Ostwald ripening in emulsions,” Advances in Colloid and Interface Science, vol. 75, no. 2, pp. 107–163, 1998.

C. Solans and M. J. García-Celma, Cosmetic Science and Technology: Theoretical Principles and Applications, 1st ed. Amsterdam: Elsevier, 2017, ch. Microemulsiones y nano emulsiones para aplicaciones cosméticas, pp. 507–518.

T. Tadros, Applied Surfactants: Principles and Applications. Weinheim, Germany: WILEY-VCH Verlag GmbH & Co, 2005.

B. Chiari-Andréo, M. Almeida-Cincotto, J. Oshiro, C. Yamada-Taniguchi, L. Chiavacci, and V. L. BorgesIsaac, Nanoparticles in Pharmacotherapy, 1st ed. Elsevier, 2019, ch. Nanoparticles for cosmetic use and its application, pp. 113–146.

K. Lintner, C. Mas-Chamberlin, P. Mondon, O. Peschard, and L. Lamy, “Cosmeceuticals and active ingredients,” Clinics in Dermatology, vol. 27, no. 5, pp. 461–468, 2009.

Y. Maphosa and V. A. Jideani, Science and Technology Behind Nanoemulsions, 1st ed. London: IntechOpen, 2018, ch. Factors affecting the stability of emulsions stabilised by biopolymers, pp. 65–81.

L. Lopes, “Overcoming the Cutaneous Barrier with Microemulsions,” Pharmaceutics, vol. 6, no. 1, pp. 52–77, 2014.

A. Faria-Silva, A. Costa, A. Ascenso, H. Ribeiro, J. Marto, L. Gonçalves, and S. Simões, Nanocosmetics Fundamentals, Applications and Toxicity, 1st ed. Elsevier, 2020, ch. Nanoemulsions for cosmetic products, pp. 59–77.

J. Schulman, W. Stoeckenius, and L. Prince, “Mechanism of Formation and Structure of Micro Emulsions by Electron Microscopy,” The Journal of Physical Chemistry, vol. 63, no. 10, pp. 1677–1680, 1959.

N. Anton and T. Vandamme, “Nano-emulsions and micro-emulsions: clarifications of the critical differences,” Pharmaceutical Research, vol. 28, pp. 978–985, 2011.

C. Nastiti, T. Ponto, E. Abd, J. Grice, H. Benson, and M. Roberts, “Topical Nano and Microemulsions for Skin Delivery,” Pharmaceutics, vol. 9, no. 4, pp. 1– 25, 2017.

G. Broze, Surfactant Science Series, 1st ed. New York: Marcel Dekker, 1999, ch. Handbook of Detergents - Part A: Properties, pp. 253–302.

K. Bouchemal, S. Briançon, E. Perrier, and H. Fessi, “Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization,” International Journal of Pharmaceutics, vol. 280, no. 1–2, pp. 241–251, 2004.

S. Jafari, P. Paximada, I. Mandala, E. Assadpour, and M. Mehrnia, Nanoencapsulation Technologies for the Food and Nutraceutical Industries, 1st ed. Academic Press, 2017, ch. Encapsulation by nanoemulsiones, pp. 36–73.

F. Villalobos-Castillejos, G. Granillo-Guerrero, D. Leyva-Daniel, L. Alamilla-Beltrán, G. GutiérrezLópez, A. Monroy-Villagrana, and S. Mahdi Jafari, Nanoemulsion. Formulation, Applications, and Characterization, 1st ed. Academic Press, 2018, ch. Fabrication of Nanoemulsions by Microfluidization, pp. 207–232.

S. Gharibzahedi and S. Jafari, Nanoemulsions Formulation, Applications, and Characterization. Academic Press, 2018, ch. Fabrication of Nanoemulsions by Ultrasonication, pp. 233–285.

L. Lee and I. Norton, “Comparing droplet breakup for a high-pressure valve homogenizer and a microfluidizer for the potential production of foodgrade nanoemulsiones,” Journal of Food Engineering, vol. 114, no. 2, pp. 158–163, 2013.

D. Oh, P. Balakrishnan, Y. Oh, D. Kim, C. Yong, and H. Choi, “Effect of process parameters on nanoemulsion droplet size and distribution in SPG membrane emulsification,” International Journal Pharmaceutics, vol. 404, no. 1–2, pp. 191–197, 2011.

A. Ribier, J. Simonnet, and J. Michelet, “Dermatologic or Cosmetic Composition Made Up by an Oil-inWater Emulsion Based on Oily Globules Coated With a Lamellar Liquid Crystal Coating,” French, Paris European Patent EP 0 641 557 B1, 1995.

A. Ribier, J. Simonnet, and S. Legret, “Transparent Nanoemulsion Less Than 100 nm Based on Fluid NonIonic Amphiphilic Lipids and Use in Cosmetics or in Dermopharmaceuticals,” U.S. US Patent 5,753,241, 1998.

R. Knapik, M. Rocha dos Santos, C. Praes, and L. Lima de Oliveira, “Characterizing nanoemulsions prepared by high pressure homogenization under various emulsifying conditions,” Cosmetics Toiletries, vol. 125, pp. 72–78, 2010.

T. Okamoto, S. Tomomasa, and H. Nakajima, “Preparation and Thermal Properties of Fatty Alcohol/Surfactant/Oil/Water Nanoemulsions and Their Cosmetic Applications,” Journal of Oleo Science, vol. 65, no. 1, pp. 27–36, 2016.

A. Gupta, H. Eral, T. Hatton, and P. Doyle, “Nanoemulsions: formation, properties and applications,” Soft Matter, vol. 12, no. 11, pp. 2826–2841, 2016.

J. Floury, J. Bellettre, J. Legrand, and A. Desrumaux, “Analysis of a new type of high pressure homogeniser. A study of the flow pattern,” Chemical Engineering Science, vol. 59, no. 4, pp. 843–853, 2004.

T. Mason, S. Graves, J. Wilking, and M. Lin, “Extreme emulsification: formation and structure of nanoemulsiones,” Condensed Matter Physics, vol. 9, no. 1, pp. 193–199, 2006.

K. Meleson, S. Graves, and T. Mason, “Formation of Concentrated Nanoemulsions by Extreme Shear,” Soft Materials, vol. 2, no. 2–3, pp. 109–123, 2004.

T. Delmas, H. Piraux, A. C. Couffin, I. Texier, F. Vinet, P. Poulin, M. E. Cates, and J. Bibette, “How To Prepare and Stabilize Very Small Nanoemulsions,” Langmuir, vol. 27, no. 5, pp. 1683–1692, 2011.

J. Edelson and R. Nicolosi, “Botulinum Nanoemulsions,” U.S. U.S. Patent US 2014/0 099 342 A1, 2016.

J. Edelson and T. Kotyla, “Peptide nanoparticles and uses therefor,” U.S. U.S. Patent US 9.486.409 B2, 2016.

S. Barreto, M. Maia, A. Benicá, H. de Assis, V. LeiteSilva, P. da Rocha-Filho, and M. Ferrari, “Evaluation of in vitro and in vivo safety of the by-product of Agave sisalana as a new cosmetic raw material: Development and clinical evaluation of a nanoemulsion to improve skin moisturizing,” Industrial Crops and Products, vol. 108, pp. 470–479, 2017.

E. El-Leithy, A. Makky, A. Khattab, and D. Hussein, “Optimization of nutraceutical coenzyme Q10 nanoemulsion with improved skin permeability and antiwrinkle efficiency,” Drug Development and Industrial Pharmacy, vol. 44, no. 2, pp. 316–328, 2017.

M. Mansur, C. Campos, A. Vermelho, J. Nobrega, L. da Cunha Boldrini, L. Balottin, and E. dos Santos, “Photoprotective nanoemulsions containing microbial carotenoids and buriti oil: Efficacy and safety study,” Arabian Journal of Chemistry, vol. 13, no. 8, pp. 6741–6752, 2020.

F. Nigro, C. Cerqueir, A. Rossi, V. Cardoso, A. Vermelho, E. Ricci-Júnior, and C. Mansur, “Development, characterization and in vitro toxicity evaluation of nanoemulsion-loaded hydrogel based on copaiba oil and coenzyme Q10,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 585, p. 124132, 2019.

K. Tou, K. Rehman, W. Ishak, and M. Zulfakar, “Influence of omega fatty acids on skin permeation of a coenzyme Q10 nanoemulsion cream formulation: characterization, in silico and ex vivo determination,” Drug Development and Industrial Pharmacy, vol. 45, pp. 1451–1458, 2019.

B. Brownlow, V. Nagaraj, A. Nayel, M. Joshi, and T. Elbayoumi, “Development and In Vitro Evaluation of Vitamin E-Enriched Nanoemulsion Vehicles Loaded with Genistein for Chemoprevention Against UVB-Induced Skin,” Damage Journal of Pharmaceutical Sciences, vol. 104, pp. 3510–3523, 2015.

I. Solè, A. Maestro, C. González, C. Solans, and J. Gutiérrez, “Optimization of nano-emulsion preparation by low-energy methods in an ionic surfactant system,” Langmuir, vol. 22, no. 20, pp. 8326–8332, 2006.

Y. Yang, C. Marshall-Breton, M. Leser, A. Sher, and D. McClements, “Fabrication of ultrafine edible emulsions: Comparison of high-energy and lowenergy homogenization methods,” Food Hydrocolloids, vol. 29, no. 2, pp. 398–406, 2012.

N. Anton and T. Vandamme, “The universality of lowenergy nano-emulsification,” International Journal of Pharmaceutics, vol. 377, no. 1–2, pp. 142–147, 2009.

J. López-Montilla, P. Herrera-Morales, S. Pandey, and D. Shah, “Spontaneous Emulsification: Mechanisms, Physicochemical Aspects, Modeling, and Applications,” Journal of Dispersion Science and Technology, vol. 23, no. 1–3, pp. 219–268, 2002.

C. Miller, “Spontaneous Emulsification Produced by Diffusion – A Review,” Colloids and Surfaces, vol. 29, no. 1, pp. 89–102, 1988.

I. Solè, A. Maestro, C. González, C. Solans, and J. Gutiérrez, “Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method,” Journal of Colloid and Interface Science, vol. 327, no. 2, pp. 433–439, 2008.

R. Pasquali, C. Bregni, and R. Serrao, “Características e identificación de los cristales líquidos liotrópicos,” Revista Mexicana de Ciencias Farmacéuticas, vol. 37, no. 2, pp. 38–53, 2006.

I. Solè, C. Solans, A. Maestro, C. González, and J. Gutiérrez, “Study of nano-emulsion formation by dilution of microemulsions,” Journal of Colloid and Interface Science, vol. 376, no. 1, pp. 133–139, 2012.

J. Pereira, A. García, S. Ceballos, J. López-Montilla, A. Muñoz, and V. Coronel, “Una metodología alternativa para evaluar la producción espontanea de emulsiones,” Faraute, vol. 7, no. 2, pp. 38–42, 2012.

D. Morales, J. Gutiérrez, M. García-Celma, and Y. Solans, “A Study of the Relation between Bicontinuous Microemulsions and Oil/Water Nanoemulsion Formation,” Langmuir, vol. 19, no. 18, pp. 7196–7200, 2003.

A. Forgiarini, J. Esquena, C. González, and C. Solans, “Formation of Nano-emulsions by Low-Energy Emulsification Methods at Constant Temperature,” Langmuir, vol. 17, no. 7, pp. 2076–2083, 2001.

L. Scriven, “Equilibrium bicontinuous structure,” Nature, vol. 263, pp. 123–125, 1976.

K. Shinoda and H. Saito, “The effect of temperature on the phase equilibria and the types of dispersions of the ternary system composed of water, cyclohexane, and nonionic surfactant,” Journal of Colloid and Interface Science, vol. 26, no. 1, pp. 70–74, 1968.

N. Anton, J. Benoit, and P. Saulnier, “Design and production of nanoparticles formulated from nanoemulsion templates–A review,” Journal of Controlled Release, vol. 128, no. 3, pp. 185–199, 2008.

T. Forster, W. von Rybinski, and A. Wadle, “Influence of microemulsion phases on the preparation of fine-disperse emulsions,” Advances in Colloid and Interface Science, vol. 58, no. 2–3, pp. 119–149, 1995.

J. L. Salager, A. Forgiarini, L. Márquez, A. Peña, A. Pizzino, M. Rodriguez, and M. Rondón-González, “Using emulsion inversion in industrial processes,” Advances in Colloid and Interface Science, vol. 108– 109, pp. 259–272, 2004.

P. Izquierdo, J. Esquena, T. Tadros, J. Dederen, J. Feng, M. García-Delma, N. Azemar, and C. Solans, “Phase behavior and nano-emulsion formation by the phase inversion temperature method,” Langmuir, vol. 20, no. 16, pp. 6594–6598, 2004.

C. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma, “Nanoemulsions,” Current Opinion in Colloid & Interface Science, vol. 10, no. 3–4, pp. 102– 110, 2005.

Z. Yang, W. Wang, G. Wang, and X. Tai, “Optimization of low-energy Pickering nanoemulsion stabilized with montmorillonite and nonionic surfactants,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 585, p. 124098, 2019.

N. Zadymova, M. Tao, and M. Poteshnova, “Tween 85 Oil-in-Water Nanoemulsions with Incorporated Chlorhexidine Base,” Colloid Journal, vol. 80, pp. 158–166, 2018.

Q. Meng, P. Long, J. Zhou, C. Ho, X. Zou, B. Chen, and L. Zhang, “Improved absorption of -carotene by encapsulation in an oil-in-water nanoemulsion containing tea polyphenols in the aqueous phase,” Food Research International, vol. 116, pp. 731–736, 2019.

Y. J. Jo, H. Karbstein, and U. van der Schaaf, “Collagen peptide-loaded W1/O single emulsions and W1/O/W2 double emulsions: Influence of collagen peptide and salt concentration, dispersed phase fraction and type of hydrophilic emulsifier on droplet stability and encapsulation efficiency,” Food & Function, vol. 10, no. 6, pp. 3312–3323, 2019.

R. Harwansh, P. Mukherjee, A. Kar, S. Bahadur, N. Al-Dhabi, and V. Duraipandiyan, “Enhancement of photoprotection potential of catechin loaded nanoemulsion gel against UVA induced oxidative stress,” Journal of Photochemistry and Photobiology B: Biology, vol. 160, pp. 318–329, 2016.

W. C. Lu, D. W. Huang, C. C. Wang, C. H. Yeh, J. C. Tsai, Y. T. Huang, and P. H. Li, “Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil,” Journal of Food and Drug Analysis, vol. 26, no. 1, pp. 82–89, 2018.

A. Sahu, J. Mishra, and A. Mishra, “Introducing Tween-Curcumin Niosomes: Preparation, Characterization and Microenvironment study,” Soft Matter, vol. 16, no. 7, pp. 1779–1791, 2020.

A. Kakuste, M. Borse, and G. Sonawane, “Polyacrylic acid and polyacrylamide as cloud point modifier for Brij-30 in alcoholic aqueous solution,” Journal of Dispersion Science and Technology, vol. 38, no. 7, pp. 334–338, 2017.

R. Goldstein, “On the theory of lower critical solution points in hydrogen-bonded mixtures,” The Journal of Chemical Physics, vol. 80, no. 10, pp. 5340–5341, 1984.

S. Wartewig, I. Alig, W. D. Hergeth, J. Lange, I. Lochmann, and T. Scherzed, “Spectroscopic investigations on aqueous solution of poly(oxyethylene)-poly(oxypropylene)poly(oxyethylene) triblockcopolymers,” Journal of Molecular Structure, vol. 219, pp. 365–370, 1990.

G. Karlstroem, “A new model for upper and lower critical solution temperatures in poly (ethylene oxide) solutions,” The Journal of Physical Chemistry, vol. 89, pp. 4962–4964, 1985.

A. Machado, D. Lundberg, A. Ribeiro, F. Veiga, B. Lindman, M. Miguel, and U. Olsson, “Preparation of Calcium Alginate Nanoparticles Using Water-inOil (W/O) Nanoemulsions,” Langmuir, vol. 28, no. 9, pp. 4131–4141, 2012.

N. Sadurní, C. Solans, N. Azemar, and M. GarcíaCelma, “Studies on the formation of O/W nanoemulsions, by low-energy emulsification methods, suitable for pharmaceutical applications,” European Journal of Pharmaceutical Sciences, vol. 26, no. 5, pp. 438–445, 2005.

R. Su, L. Yang, Y. Wang, S. Yu, Y. Guo, J. Deng, and X. Jin, “Formulation, development, and optimization of a novel octyldodecanol-based nanoemulsion for transdermal delivery of ceramide IIIB,” International Journal of Nanomedicine, vol. 12, pp. 5203–5221, 2017.

P. Rocha-Filho, M. Ferrari, M. Maruno, O. Souza, and V. Gumiero, “In Vitro and In Vivo Evaluation of Nanoemulsion Containing Vegetable Extracts,” Cosmetics, vol. 4, no. 32, 2017.

M. Dario, M. Santos, A. Viana, E. Arêas, N. BouChacra, M. Oliveira, and M. Velasco, “A high loaded cationic nanoemulsion for quercetin delivery obtained by sub-PIT method,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 489, pp. 256–264, 2016.

T. Pereira, C. Guerreiro, M. Maruno, M. Ferrari, and P. Rocha-Filho, “Exotic Vegetable Oils for Cosmetic O/W Nanoemulsions: In Vivo Evaluation,” Molecules, vol. 21, no. 3, p. 248, 2016.

J. Salager, R. Antón, J. Bullón, A. Forgiarini, and R. Marquez, “How to Use the Normalized Hydrophilic-Lipophilic Deviation (HLDN) Concept for the Formulation of Equilibrated and Emulsified Surfactant-Oil-Water Systems for Cosmetics and Pharmaceutical Products,” Cosmetics, vol. 7, no. 3, p. 57, 2020.

V. Perez, M. Sanchez, V. Coronel, J. Pereira, and R. Alvarez, “Uso de microemulsiones en la limpieza de suelos contaminados con crudo,” Revista Ingeniería UC, vol. 19, no. 2, pp. 61–68, 2012.

T. Hirao, Cosmetic Science and Technology: Theoretical Principles and Applications, 1st ed. Elsevier, 2017, ch. Structure and Function of Skin From a Cosmetic Aspect, pp. 673–683.

A. Machado, P. Lopes, C. Raffier, I. Haridass, M. Roberts, J. Grice, and V. Leite-Silva, Cosmetic Science and Technology: Theoretical Principles and Applications, 1st ed. Elsevier, 2017, ch. Skin Penetration, pp. 741–755.

D. Morrow, P. McCarron, A. Woolfson, and R. Donnelly, “Innovative strategies for enhancing topical and transdermal drug delivery,” The Open Drug Delivery Journal, vol. 1, pp. 36–59, 2007.

A. Mihranyan, N. Ferraz, and M. Stromme, “Current status and future prospects of nanotechnology in cosmetics,” Progress in Materials Science, vol. 57, no. 5, pp. 875–910, 2012.

S. Dutta, S. Sivakamasundari, J. Moses, and A. Chinnaswamy, Nanoengineering in the Beverage Industry, 1st ed. Elsevier, 2020, ch. Nanoencapsulation of Green Tea Polyphenols, pp. 229–261.

S. Dhawan, P. Sharma, and S. Nanda, Nanocosmetics Fundamentals, Applications and Toxicity, 1st ed. ElSevier, 2020, ch. Cosmetic nanoformulations and their intended use, pp. 141–169.

S. Ghosh, A. Badruddoza, M. Uddin, and K. Hidajat, “Adsorption of chiral aromatic amino acids onto carboxymethyl- -cyclodextrin bonded Fe3O4/SiO2 core–shell nanoparticles,” Journal of Colloid and Interface Science, vol. 354, no. 2, pp. 483–492, 2011.

L. Barreto and M. Cunha, “Cyclodextrin: important pharmaceutical functional excipient,” Latin American Journal of Pharmacy, vol. 27, no. 4, pp. 629–636, 2008.

A. Rasheed, C. Kumar, and V. Sravanthi, “Cyclodextrins as drug carrier molecule: a review,” Scientia Pharmaceutica, vol. 76, no. 4, pp. 567–598, 2008.

D. Alvarez-Dorta, E. León, A. Kennedy, A. Martín, I. Pérez-Martín, and E. Suárez, “Easy Access to Modified Cyclodextrins by an Intramolecular Radical Approach,” Angewandte Chemie International Edition, vol. 54, pp. 3674–3678, 2015.

Y. Guo, S. Guo, J. Li, E. Wang, and S. Dong, “Cyclodextrin–graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim,” Talanta, vol. 84, no. 1, pp. 60–64, 2011.

J. Gnaim, “Cyclodextrin containing polymers and uses thereof,” U.S. Patent US20 080 275 139A1, 2008.

H. D. Max, T. D. Raschke, and R. D. Schimpf, “Skin care compositions with retinoids, ubiquinones, and biotin or carnitine,” German European Patent EP1 449 514A1, 2004.

M. Adams, A. Lavasanifar, and G. Kwon, “Amphiphilic block copolymers for drug delivery,” Journal of Pharmaceutical Sciences, vol. 92, no. 7, pp. 1343– 1355, 2003.

A. Choucair and A. Eisenberg, “Control of amphiphilic block copolymer morphologies using solution conditions,” The European Physical Journal E, vol. 10, pp. 37–44, 2003.

L. Zhang, K. Yu, and A. Eisenberg, “Ion-Induced Morphological Changes in “Crew-Cut” Aggregates of Amphiphilic Block Copolymers,” Science, vol. 272, no. 5269, pp. 1777–1779, 1996.

K. Yoncheva, P. Calleja, M. Agüeros, P. Petrov, I. Miladinova, C. Tsvetanov, and J. Irache, “Stabilized micelles as delivery vehicles for paclitaxel,” International Journal of Pharmaceutics, vol. 436, no. 1-2, pp. 258–264, 2012.

A. Bizerra and V. Silva, “Sistemas de Liberação Controlada: Mecanismos e aplicações,” Revista Saúde e Medio Ambiente–RESMA, vol. 3, no. 2, pp. 1–12, 2016.

R. Daudt, J. Emanuelli, I. Kulkap-Guerreiro, A. Pohlmann, and S. Guterres, “A nanotecnologia como estratégia para o desenvolvimento de cosméticos,” Ciência e Cultura, vol. 65, no. 3, p. 2831, 2013.

J. Devissaguet and H. Fessi, “Process for the preparation of dispersible colloidal system of a substance in the form of nanocapsules,” France Patent Application Patent US5 049 322A, 1991.

O. Pillai and R. Panchagnula, “Polymers in drug delivery,” Current Opinion in Chemical Biology, vol. 5, no. 4, pp. 447–451, 2001.

S. Schaffazick, S. Guterres, L. Freitas, and A. Pohlmann, “Caracterización y estabilidad físicoquímica de sistemas poliméricos nanoparticulados para administración de fármacos,” Química Nova, vol. 26, no. 5, pp. 726–737, 2003.

D. Moinard-Chécot, Y. Chevalier, S. Briançon, L. Beney, and H. Fessi, “Mechanism of nanocapsules formation by the emulsion–diffusion process,” Journal of Colloid and Interface Science, vol. 317, no. 2, pp. 458–468, 2008.

A. Esmaeili, B. Saremnia, A. Koohian, and S. Rezazadeh, “Mechanism of nanocapsules of Matricaria recutita L. extract formation by the emulsion diffusion process,” Superlattices and Microstructures, vol. 50, no. 4, pp. 340–349, 2011.

I. Kaur and I. Agrawal, “Nanotechnology: A New Paradigm in Cosmeceuticals,” Recent Patents on Drug Delivery & Formulation, vol. 1, no. 2, pp. 171–182, 2007.

P. Dos Santos, P. Miyashiro, and V. Da silva, “A Nanotecnologia Em Formulacão Cosmética,” Master’s thesis, Centro Universitário das Faculdades Metropolitanas Unidas, 2015.

P. Morganti, “Use and potential of nanotechnology in cosmetic dermatology,” Clinical, Cosmetic and Investigational Dermatology, vol. 3, pp. 5–13, 2010.

T. Tree-Udom, S. Wanichwecharungruang, J. Seemork, and S. Arayachukeat, “Fragrant chitosan nanospheres: controlled release systems with physical and chemical barriers,” Carbohydrate Polymers, vol. 86, no. 4, pp. 1602–1609, 2011.

A. Garud, S. Deepti, and N. Garud, “Solid lipid nanoparticles (SLN): method, characterization and applications,” International Current Pharmaceutical Journal, vol. 1, no. 11, pp. 384–393, 2012.

I. Sarathchandiran, “A review on nanotechnology in solid lipid nanoparticles,” International Journal of Pharmaceutical Development & Technology, vol. 2, no. 1, pp. 45–61, 2012.

X. Wu and R. H. Guy, “Applications of nanoparticles in topical drug delivery and in cosmetics,” Journal of Drug Delivery Science and Technology, vol. 19, no. 6, pp. 371–384, 2009.

M. R. Mozafari, “Liposomes: an overview of manufacturing techniques,” Cellular & Molecular Biology Letters, vol. 10, no. 4, pp. 711–719, 2005.

T. Reva, A. Vaseem, S. Satyaprakash, and J. Md.Khalid, “Liposomes: the novel approach in cosmaceuticals,” World Journal of Pharmacy and Pharmaceutical Sciences, vol. 4, no. 6, pp. 1616– 1640, 2015.

S. Kurapati, “The current role of nanomaterials in cosmetics,” Journal of Chemical and Pharmaceutical Research, vol. 8, no. 5, pp. 906–914, 2016.

A. Singh, R. Malviya, and P. Sharma, “Novasome—a breakthrough in pharmaceutical technology a review article,” Advances in Biological Research, vol. 5, no. 4, pp. 184–189, 2011.

N. Karimi, B. Ghanbarzadeh, H. Hamishehkar, F. Keyvani, A. Pezeshki, and M. Gholian, “Phytosome and liposome: the beneficial encapsulation systems in drug delivery and food application,” Journal Applied Food Biotechnology, vol. 2, no. 3, pp. 17–26, 2015.

M. Nounou, L. El-Khordagui, N. Khalafallah, and S. Khalil, “Liposomal Formulation for Dermal and Transdermal Drug Delivery: Past, Present and Future,” Recent Patents on Drug Delivery & Formulation, vol. 2, no. 1, pp. 9–18, 2008.

P. Ganesan and D. Choi, “Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy,” International Journal of Nanomedicine, vol. 11, pp. 1987–2007, 2016.

K. Fathima, N. Antony, A. Paul, and S. Nair, “Sphingosome vescicular system,” International Journal of Pharmaceutical Sciences Review and Research, vol. 41, no. 1, pp. 208–213, 2016.

T. Nguyen and S. Rajendran, Nanocosmetics Fundamentals, Applications and Toxicity, 1st ed. Elsevier, 2020, ch. Current commercial nanocosmetic products, pp. 445–453.

Descargas

Publicado

30-12-2020

Cómo citar

Monroy , R., & Pereira, J. (2020). Avances recientes en el diseño de nanoemulsiones: conceptos y tendencias sobre nanocosmeticos. Revista Ingeniería UC, 27(3), 249–272. https://doi.org/10.54139/revinguc.v27i3.146

Número

Sección

Estado del arte