Nuevos retos en el desarrollo y uso de vacunas contra la COVID-19.

Autores/as

DOI:

https://doi.org/10.54139/salus.v25i3.126

Palabras clave:

COVID-19, SARS-CoV-2, vacunas

Resumen

Introducción. Los primeros casos de la COVID-19 se reportaron en China a principios de diciembre del 2019 y el descubrimiento de su agente etiológico, el virus SARS-CoV-2, se anunció en enero del 2020. El conocimiento adquirido sobre la estructura y biología del SARS-CoV-2 permitió, entre otras cosas, el rápido desarrollo de varias vacunas contra la COVID-19, que hasta ahora se han basado en la producción de anticuerpos neutralizantes contra la proteína S de la espiga. Metodología. Las vacunas fueron inicialmente autorizadas para uso de emergencia, basado en resultados de seguridad, inmunogenicidad y eficacia en pruebas clínicas de fase 3. Estas vacunas se comenzaron a aplicar en programas de salud pública en diciembre del 2020. Hallazgos de interpretación. A medida que los programas de vacunación se expanden, varias preguntas se comienzan a plantear con respecto a las actuales vacunas, las cuales son discutidas en esta revisión: seguridad y efectos adversos, eficacia contra las variantes virales emergentes, efectividad en condiciones de “vida real”, duración de la inmunidad protectora y necesidad de refuerzos, vacunación heteróloga, y vacunación de niños. Reflexiones finales. La estrategia para el uso de las vacunas debe ser basada en el conocimiento científico, el cual está en desarrollo continuo. La investigación continúa para desarrollar una segunda generación de vacunas más efectivas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Esparza J. Vacunas contra la COVID-19: Progresos y expectativas. Rev Soc Ven Microbiol. 2020;40:109-121.

Esparza J. El futuro de la pandemia de la COVID-19 y la esperanza de una vacuna. Invest Clin. 2020;61(4):295-299. https://doi.org/10.22209/IC.v61n4a00

Pujol FH, Esparza J. COVID-19: virus, variantes y vacunas. Bol Acad C Fis Mat Nat. 2021;71(2):1-10. https://doi.org/10.47449/CM.2021.2.7

Pujol FH, Zambrano JL, Jaspe R, Loureiro CL, Vizzi E, Liprandi F y Rangel HR. Biología y evolución del coronavirus causante de la COVID-19. Rev Soc Venezol Microbiol 2020;40:63-73.

WHO. Tracking SARS-CoV-2 variants. 2021. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/

Pujol FH, Esparza J. Emergencia de un nuevo linaje del virus causante de la COVID-19 en el Reino Unido. CientMed 2020;1(36):1-3. https://doi.org/10.47449/CM.2021.2.3

Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat Rev Drug Discov. 2021; https://doi.org/10.1038/s41573-021-00283-5

Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020:367:1260-1263. https://doi.org/10.1126/science.abb2507

Graham BS. Rapid COVID-19 vaccine development, Science 2020;368:945-946. https://doi.org/10.1126/science.abb8923

Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BF. Progress of the COVID-19 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat Rev Immunol. 2021. https://doi.org/10.1038/s41577-021-00592-1

Eccleston-Turner M, Upton H. International collaboration to ensure equitable access to vaccines for COVID-19: The ACTAccelerator and the COVAX facility. Milbank Q. 2021;99(2):426-449. https://doi.org/10.1111/1468-0009.12503

Frederiksen LSF, Zhang Y, Foged C, Thakur A. The long road toward COVID-19 herd immunity: Vaccine platform technologies and mass immunization strategies. Front Immunol. 2020;11:1817. https://doi.org/10.3389/fimmu.2020.01817

Wong RSY. COVID-19 vaccines and herd immunity: Perspectives, challenges and prospects. Malays J Pathol. 2021;43(2):203-217.

Chen YT. The effect of vaccination rates on the infection of COVID-19 under the vaccination rates below the herd immunity threshold. Int J Environ Res Public Health, 2021;18(4):7491. https://doi.org/10.3390/ijerph18147491

Chile, Comité Asesor de Vacunas y Estrategias de Inmunización. Recomendaciones del CAVEI sobre la vacunación COVID-19 en niños a partir de los 6 años.8 septiembre 2021.

Han B, Song Y, Li C, Yang W, Ma Q, Jiang Z et al. Safety, tolerability and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomized, controlled, phase 1 / 2 clinical trial. Lancet Infect Dis. 2021. https://doi.org/10.1016/S1473-3099(21)00319-4

Cohen J. The dream vaccine. Science 2021;372:227-231. https://doi.org/10.1126/science.372.6539.227

Wang L, Zhou Y, Zhang Y, Yang SY, Schramm CA, Shi W, et al. Ultrapotent antibodies against diverse and highly transmissible SARS-C0V-variants. Science 2021;373:759. https://doi.org/10.1126/science.abh1766

Chen, Z., Wherry, EJ. T cell responses in patients with COVID-19. Nat Rev Immunol. 2020;20:529-536. https://doi.org/10.1038/s41577-020-0402-6

De Sanctis JB, García AH, Moreno D, Hajduch M. Coronavirus infection: An immunologists' perspective. Scand J Immunol. 2021;93(6):e13043. doi:https://doi.org/10.1111/sji.13043

Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, et al. Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults. N Engl J Med. 2020;383(25):2427-2438. https://doi.org/10.1056/NEJMoa2028436

Voysey M, Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomized trials. Lancet. 2021;397(10277):881-891. https://doi.org/10.1016/S0140-6736(21)00432-3

Jeyanathan M, Afkhami S, Smaill F, Miller MS, Lichty BD, Xing Z. Immunological considerations for COVID-19 vaccine strategies. Nat Rev Immunol. 2020;20(10):615-632. https://doi.org/10.1038/s41577-020-00434-6

Gilbert PB, Montefiori DC, McDermott A, Fong Y, Benkeser D, Deng W et al. Immune correlates analysis of the mRNA1273 COVID-19 vaccine efficacy trial. medRciv 2021. https://doi.org/10.1101/2021.08.09.21261290

Koch T, Mellinghoff SC, Shamsrizi P, Addo MM, Dahlke C. Correlates of vaccine-induced protection against SARS-CoV-2. Vaccines (Basel). 2021 Mar 10;9(3):238.. https://doi.org/10.3390/vaccines9030238

Petousis-Harris H. Assessing the safety of COVID-19 vaccines: A primer. Drug Saf 2020; 43:1205-1210. https://doi.org/10.1007/ s40264-020-01002-6 https://doi.org/10.1007/s40264-020-01002-6

CDC. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine - United States, December 14-23, 2020. MMWR 2021;70(2):46-51. https://doi.org/10.15585/mmwr.mm7002e1

Kelso JM. Anaphylactic reactions to novel mRNA SARS-CoV-2/ COVID-19 vaccines. Vaccine 2021;39(6):865-867. https://doi.org/10.1016/j.vaccine.2020.12.084

Esparza J, Vizcaino G, Pujol FH. Trombosis asociada a vacunas contra la COVID-19 basadas en vectores adenovirales: implicaciones para la vacunación en Venezuela. SciMed 2021;2(28)1-7. https://doi.org/10.47449/CM.2021.2.7

Vizcaino G. Síndrome trombocitopénico trombótico posvacunación. ¿Casualidad o causalidad? Especial referencia a las vacunas Astra-Zeneca COVID-19 (Vaxzvria®) y Johnson & Johnson. Gac Méd Caracas. 2021;129(3):665-675. https://doi.org/10.47307/GMC.2021.129.3.14

Bozkurt B, Kamat I, Hotez PJ. Myocarditis with COVID-19 mRNA vaccines. Circulation 2021;144:471-484. https://doi.org/10.1161/CIRCULATIONAHA.121.056135

Rosenblum HG, Hadler SC, Moulia D, Shimabukuro TT, Su JR, Tepper NK, et al. Use of COVID-19 vaccines after reports of adverse events among adult recipients of Janssen (Johnson & Johnson) and mRNA COVID-19 (Pfizer-BioNTech and Moderna): Update from the Advisory Committee on Immunization Practices - United States, July 2021. MMWR 2021;70:1094-1099. https://doi.org/10.15585/mmwr.mm7032e4

Hodgson SE, Mansatta K, Mallet G, Harris V, Emary KRW, Pollard AJ. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. Lancet Infect Dis. 2001;21:e26-35. https://doi.org/10.1016/S1473-3099(20)30773-8

Mehrotra DV, Janes HE, Fleming TR, Annunziato PW, Neuzil KM, Carpp LN et al. Clinical endpoints for evaluating efficacy in COVID-19 vaccine trials. Ann Intern Med. 2020; https://doi.org/10.7326/M20-6169

Ciarlet M, Schödel F. Development of a rotavirus vaccine: Clinical safety, immunogenicity, and efficacy of pentavalent rotavirus vaccine, RotaTeq. Vaccine 2009; 27(9):G72-G81. https://doi.org/10.1016/j.vaccine.2009.09.107

Jara A, Undurraga EA, González C, Paredes F, Fontecilla T, Jara G, et al. Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile. N Engl J Med 2021; 385:875-884 https://doi.org/10.1056/NEJMoa2107715

Krause PR, Fleming TR, Longini IM, Peto R, Briand S, Heymann DL et al. SARS-CoV-2 variants and vaccines. N Engl J Med 2021;385:179-186. https://doi.org/10.1056/NEJMsr2105280

Cevik M, Grubaugh ND, Iwasaki A, Openshaw P. COVID-19 vaccines: Keeping pace with SARS-CoV-2 variants. Cell 2021; 184. https://doi:10.1016/j.cell.2021.09.010 https://doi.org/10.1016/j.cell.2021.09.010

Lopez Bernal J, Adrews N, Gower C, Gallaguer E, Simmons R, Thelwall S, et al. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) variant. N Eng J Med. 2021;385:585-594. https://doi.org/10.1056/NEJMoa2108891

Seow, J., Graham, C., Merrick, B, Acors S, Pickering S, Steel KJA, et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol. 2020;5: 1598-1607. https://doi.org/10.1038/s41564-020-00813-8

Turner, J.S., Kim, W., Kalaidina, E, Goss CW, Rauseo AM, Schmitz AJ, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021;595:421-425. https://doi.org/10.1038/s41586-021-03647-4

Turner, J.S., O'Halloran, J.A., Kalaidina, Kim W, Schmitz AJ, Zhou JQ, et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature. 2021;596:109-113. https://doi.org/10.1038/s41586-021-03738-2

Doria-Rose N, Suthar MS, Makowski M, O'Connell S, McDermott AB, Flach B, et al. Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for Covid-19. N Engl J Med. 2021;384:2259-2261. https://doi.org/10.1056/NEJMc2103916

Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet 2021;396:1979-1993. https://doi.org/10.1016/S0140-6736(20)32466-1

Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021;397:671-681. https://doi.org/10.1016/S0140-6736(21)00234-8

Barouch DH., Stephenson KE., Sadoff J, Yu J, Chang A, Gebre M, et al. (2021) Durable humoral and cellular Immune responses 8 months after Ad26.COV2.S vaccination. N Engl J Med. 2021;385:951-953. https://doi.org/10.1056/NEJMc2108829

Krause PR, Fleming TR, Peto R, Longini IM, Figueroa JP, Sterne JAC, et al. Considerations in boosting COVID-19 immune responses. Lancet. 2021; https://doi.org/10.1016/S0140-6736(21)02046-8

CDC. COVID-19 Vaccines for moderately to severely immunocompromised people. 2021; https://www.cdc.gov/ coronavirus/2019cov/vaccines/recommendations/immuno.html

Bar-On YM, Goldberg Y, Mande M, Bodenheimer O, Freedman L, Kalkstein N, et al. BNT162b2 vaccine booster dose protection: A nationwide study from Israel. medRxiv 2021. https://doi.org/10.1101/2021.08.27.21262679

Lu S. Heterologous prime-boost vaccination. Curr Opin Immunol. 2009; 21(3):346-351 https://doi.org/10.1016/j.coi.2009.05.016

Excler J-L, Kim JH. Novel prime-boost vaccine strategies against HIV-1. Expert Rev Vaccines. 2019;18:765-779. https://doi.org/10.1080/14760584.2019.1640117

Barros-Martins J, Hammerschmidt SI, Cossmann A, Odak I, Stankov MV, Morillas Ramos G, et al. Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1nCoV-19/BNT162b2 vaccination. Nat Med. 2021;27:1525-1529. https://doi.org/10.1038/s41591-021-01449-9

Borobia AM, Carcas AJ, Pérez-Olmeda M, Castaño L, Bertrán MJ, Garcia-Pérez J, et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChADoX1-s-primed participants (CombiVacS): a multicentre, open-label, randomized, controlled, phase 2 trial. Lancet 2021;398:121-130. https://doi.org/10.1016/S0140-6736(21)01420-3

Hillus D, Schwarz T, Tober-Lau P, Vanshylla K, Hastor H, Thibeault C, et al. Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunization with ChADOx1nCoV-19 and BNT162b2: a prospective study. Lancet 2021. https://doi:19.1016/S2213-2600(21)00357-X

Schmidt T, Klemis V, Schub D, Mihm J, Hielscher F, Marx S, et al, Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination. Nat Med. 2021;27:1530-1534. https://doi.org/10.1038/s41591-021-01464-w

Argentina, Ministerio de Salud (agosto de 2021). Recomendaciones sobre esquemas heterólogos de vacunación contra COVID-19. https://bancos.salud.gob.ar/sites/default/ files/2021-08/recomendacion-sobre-esquemas-heterologos-de-vacunacion-contra-COVID19.pdf

Descargas

Publicado

16-02-2022

Cómo citar

Esparza, J., Garcia, A., Figuera, M., & Pujol, F. H. (2022). Nuevos retos en el desarrollo y uso de vacunas contra la COVID-19. Salus, 25(3), 8–14. https://doi.org/10.54139/salus.v25i3.126

Número

Sección

Revisión Bibliográfica