Diseño de sumador completo rápido de baja potencia utilizando Domino Logic basado en Unión de Túnel Magnético (UTM) y Memristor

Autores/as

DOI:

https://doi.org/10.54139/revinguc.v27i3.148

Palabras clave:

MTJ, Memristor, Domino Logic, Sumador completo

Resumen

Los circuitos CMOS de Domino se utilizan ampliamente en sistemas integrados de gran escala (VLSI) de alto rendimiento. La topología de los circuitos dominó para operación de alta velocidad, menor consumo de energía y robustez es de gran importancia en el diseño de sistemas digitales. El presente artículo propone un circuito sumador completo de baja potencia y alta velocidad, que utiliza una nueva familia lógica de dominó CMOS basada en elementos de unión de túnel magnético (UTM) y memristor en la técnica de entrada de difusión de puerta (GDI). En comparación con un circuito lógico CMOS estático, un circuito lógico dinámico es importante ya que proporciona una mayor velocidad y requiere menos transistores. En comparación con los circuitos propuestos recientemente para estilos lógicos dinámicos, las características del circuito propuesto son un consumo de energía dinámica muy bajo y menos retardo. El problema con los circuitos dinámicos es la falta de una salida estable en diferentes momentos, mientras que el circuito propuesto conserva el valor de salida utilizando elementos de memoria como UTM y memristor durante el ciclo de reloj. La técnica propuesta muestra un consumo máximo de energía de 0,317 µW en sumadores completos basados en MTJ/Memristor. Además, la técnica propuesta muestra un retraso máximo de 0,35 ns. Se simula el sumador completo propuesto, y su disipación de potencia y rendimiento se analizan utilizando HSPICE en tecnología CMOS estándar de 7 nm.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

M. Pedram and J. M. Rabaey, Power aware design methodologies. Boston, MA, USA: Springer Science & Business Media, 2002.

Y. Zhang, W. Zhao, J. O. Klein, W. Kang, D. Querlioz, Y. Zhang, D. Ravelosona, and C. Chappert, “Spintronics for low-power computing,” in DATE ’14: Proceedings of the conference on Design, Automation & Test in Europe, Leuven, BEL, 2014.

W. C. Athas, L. J. Svensson, J. G. Koller, N. Tzartzanis, and E. Y. C. Chou, “Low-power digital systems based on adiabatic-switching principles,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 2, no. 4, pp. 398–407, 1994.

E. Deng, Y. Zhang, J. O. Klein, D. Ravelsona, C. Chappert, and W. Zhao, “Low power magnetic fulladder based on spin transfer torque MRAM,” IEEE transactions on magnetics, vol. 49, pp. 4982–4987, 2013.

F. Sharifi, Z. Saifullah, and A. H. Badawy, “Design of adiabatic MTJ-CMOS hybrid circuits,” in 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2017, pp. 715–718.

S. j. Jassbi and m. mousavi, “A Novel Low Power Full Adder Using a Modified Domino Logic,” International Journal of Computer Sciences and Engineering, vol. 4, no. 6, pp. 8–11, 2016.

Y. Gang, W. Zhao, J. Klein, C. Chappert, and P. Mazoyer, “A High-Reliability, Low-Power Magnetic Full Adder,” IEEE Transactions on Magnetics, vol. 47, no. 11, pp. 4611–4616, 2011.

M. Anis, S. Areibi, and M. Elmasry, “Design and optimization of multithreshold CMOS (MTCMOS) circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 10, pp. 1324–1342, 2003.

M. J. Gitanjali, “Efficient adders for assistive devices,” Engineering Science and Technology, an International Journal, vol. 20, no. 1, pp. 95–104, 2017.

K. Roy, S. Mukhopadhyay, and H. MahmoodiMeimand, “Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits,” Proceedings of the IEEE, vol. 91, no. 2, pp. 305–327, 2003.

S. H. Choi, B. C. Paul, and K. Roy, “Dynamic noise analysis with capacitive and inductive coupling [high-speed circuits],” in Proceedings of ASPDAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation Conference and 15h International Conference on VLSI Design, 2002, pp. 65–70.

S. M. Sharroush, Y. S. Abdalla, A. A. Dessouki, and E. A. El-Badawy, “Impact of technology scaling on the performance of domino CMOS logic,” in 2008 International Conference on Electronic Design, 2008, pp. 1–7.

M. J. Garima and H. Lohani, “Design, implementation and performance comparison of multiplier topologies in power-delay space,” Engineering Science and Technology, an International Journal, vol. 19, no. 1, pp. 271–278, 2016.

M. H. Moaiyeri, M. Nasiri, and N. Khastoo, “An Efficient ternary serial adder based on carbon nanotube FETs,” Engineering Science and Technology, an International Journal, vol. 19, no. 1, pp. 355–363, 2016.

F. Moradi, T. V. Cao, E. I. Vatajelu, A. Peiravi, H. Mahmoodi, and D. T. Wisland, “Domino logic design for high performance and leakage-tolerant applications,” Integration, vol. 46, no. 3, pp. 247–254, 2013.

F. Moradi, H. Mahmoodi, and A. Peiravi, “A High Speed and Leakage-Tolerant Domino Logic for High Fan-in Gates,” in Proceedings of the 15th ACM Great Lakes Symposium on VLSI, ser. GLSVLSI ’05. New York, NY, USA: Association for Computing Machinery, 2005, pp. 478–481.

A. Dadoria, K. Khare, T. Gupta, and R. Singh, “A Novel High-Performance Lekage-Tolerant, Wide Fan-In Domino Logic Circuit in Deep-Submicron Technology,” Circuits and Systems, vol. 6, no. 4, pp. 103–111, 2015.

P. Gronowski, Design of High-Performance Microprocessor Circuits. Piscataway, NJ: IEEE Press, 2001, ch. Issues in dynamic logic design, Design of HighPerformance Microprocessor Circuits, pp. 140–157.

S. Garg and T. K. Gupta, “Low power domino logic circuits in deep-submicron technology using CMOS,” Engineering Science and Technology, an International Journal, vol. 21, no. 4, pp. 625–638, 2018.

M. H. Anis, M. W. Allam, and M. I. Elmasry, “Energyefficient noise-tolerant dynamic styles for scaleddown CMOS and MTCMOS technologies,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 10, no. 2, pp. 71–78, 2002.

Y. Lih, N. Tzartzanis, and W. W. Walker, “A Leakage Current Replica Keeper for Dynamic Circuits,” IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 48– 55, 2007.

G. Palumbo, M. Pennisi, and M. Alioto, “A Simple Circuit Approach to Reduce Delay Variations in Domino Logic Gates,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 10, pp. 2292–2300, 2012.

M. Alioto, G. Palumbo, and M. Pennisi, “Understanding the Effect of Process Variations on the Delay of Static and Domino Logic,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 5, pp. 697–710, 2010.

H. F. Dadgour and K. Banerjee, “A Novel VariationTolerant Keeper Architecture for High-Performance Low-Power Wide Fan-In Dynamic or Gates,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 11, pp. 1567–1577, 2010.

B. Behin-Aein, J.-P. Wang, and R. Wiesendanger, “Computing with spins and magnets,” MRS Bulletin, vol. 39, no. 8, pp. 696–702, 2014.

W. Zhao, E. Belhaire, C. Chappert, and P. Mazoyer, “Spin Transfer Torque (STT)-MRAM–Based Runtime Reconfiguration FPGA Circuit,” ACM Trans. Embed. Comput. Syst., vol. 9, no. 2, Oct. 2009.

R. Douglas, M. Mahowald, and C. Mead, “Neuromor- phic Analogue VLSI,” Annual Review of Neuroscience, vol. 18, no. 1, pp. 255–281, 1995, pMID: 7605063.

S. R. Nandakumar, S. R. Kulkarni, A. V. Babu, and B. Rajendran, “Building Brain-Inspired Computing Systems: Examining the Role of Nanoscale Devices,” IEEE Nanotechnology Magazine, vol. 12, no. 3, pp. 19–35, 2018.

Z. Biolek, D. Biolek, and V. Biolkov, “SPICE Model of Memristor with Nonlinear Dopant Drift,” Radioengineering, vol. 18, no. 2, pp. 210–214, 2009.

F. Argall, “Switching phenomena in titanium oxide thin films,” Solid-State Electronics, vol. 11, no. 5, pp. 535– 541, 1968.

J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,” Nature Nanotechnology, vol. 3, no. 7, pp. 429–433, 2008.

M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R. Stewart, and R. S. Williams, “Switching dynamics in titanium dioxide memristivev devices,” Journal of Applied Physics, vol. 106, no. 7, pp. 074 508–074 514, 2009.

R. S. Williams, G. Medeiros Ribeiro, D. Borisovich Strukov, and J. Yang, “Controlled switching memristor,” U.S. patentus US20 120 313 070A1, 2012.

M. Mahvash and A. C. Parker, “A memristor SPICE model for designing memristor circuits,” in 2010 53rd IEEE International Midwest Symposium on Circuits and Systems, 2010, pp. 989–992.

J. G. Simmons, “Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film,” Journal of Applied Physics, vol. 34, no. 6, pp. 1793–1803, 1963.

D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature, vol. 453, pp. 80–83, 2008.

T. A. Wey and S. Benderli, “Amplitude modulator circuit featuring TiO2 memristor with linear dopant drift,” Electronics Letters, vol. 45, no. 22, pp. 1103– 1104, 2009.

Y. N. Joglekar and S. J. Wolf, “The elusive memristor: properties of basic electrical circuits,” European Journal of Physics, vol. 30, no. 4, pp. 661–683, 2009.

S. Shin, K. Kim, and S.-M. Kang, “Compact Models for Memristors Based on Charge-Flux Constitutive Relationships,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems , vol. 29, no. 4, pp. 590–598, 05 2010.

T. Fang, B. Amine, and G. Zhouye, “Low power dynamic logic circuit design using a pseudo dynamic buffer,” Integration, vol. 45, no. 4, pp. 395–404, 2012.

V. Kursun and E. G. Friedman, “Domino logic with variable threshold voltage keeper,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6, pp. 1080–1093, 2003.

Descargas

Publicado

30-12-2020

Cómo citar

Parvizi, P., Sabbaghi-Nadooshan, R., & Tavakoli, M. B. (2020). Diseño de sumador completo rápido de baja potencia utilizando Domino Logic basado en Unión de Túnel Magnético (UTM) y Memristor. Revista Ingeniería UC, 27(3), 282–293. https://doi.org/10.54139/revinguc.v27i3.148

Número

Sección

Artículos