Influencia de la formulación de espumas en medios porosos para procesos de recuperación mejorada de hidrocarburos

Autores/as

  • Inés C. Hernández Laboratorio de Petróleo Hidrocarburo y Derivados (PHD), Departamento de Química. FacultaExperimental de Ciencias y Tecnología. Universidad de Carabobo. Venezuela. https://orcid.org/0000-0002-7824-3008
  • Juan Pereira Laboratorio de Petróleo Hidrocarburo y Derivados (PHD), Departamento de Química. Facultad Experimental de Ciencias y Tecnología. Universidad de Carabobo. Venezuela. https://orcid.org/0000-0003-4600-726X

DOI:

https://doi.org/10.54139/revinguc.v30i1.288

Palabras clave:

Espuma, formulación, recuperación mejorada, surfactantes

Resumen

Los sistemas surfactantes presentan un alto interés en la industria petrolera por sus múltiples aplicaciones tecnológicas, en especial en los procesos de recuperación mejorada de hidrocarburos en los yacimientos. En el presente trabajo se desarrollaron sistemas unidimensionales micro porosos heterogéneos para medir la influencia de la inyección de espuma, empleando tres surfactantes a diferentes concentraciones (0,1; 1,0; 5,0; 10,0 % m/v). La mayor eficiencia de desplazamiento y recuperación se alcanzó con el surfactante SDS a la concentración de 5,0 %, al obtener un 70 % de rendimiento en extracción, en comparación con las demás concentraciones evaluadas. Este resultado demostró su aplicabilidad en el desarrollo de tecnologías nacionales para la recuperación mejorada en base a la inyección de espumas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

G. G. Bernard, L. W. Holm, and C. P. Harvey, “Use of Surfactant to Reduce CO2 Mobility in Oil Displacement,” Society of Petroleum Engineers Journal, vol. 20, no. 4, pp. 281–292, 1980. https://doi.org/10.2118/8370-PA

C. Hill and J. Eastoe, “Foams: From nature to industry,” Advances in Colloid and Interface Science, vol. 247, pp. 496–513, 2017. https://doi.org/10.1016/J.CIS.2017.05.013

Y. Zeng, R. Farajzadeh, A. A. Eftekhari, S. VincentBonnieu, A. Muthuswamy, W. R. Rossen, G. J. Hirasaki, , and S. L. Biswal, “Role of Gas Type on Foam Transport in Porous Media,” Langmuir, vol. 32, no. 25, pp. 6239–6245, 2016. https://doi.org/10.1021/acs.langmuir.6b00949

V. Alvarado and E. Manrique, “Enhanced oil recovery: An update review,” Energies, vol. 3, no. 9, pp. 1529– 1575, 2010. https://doi.org/10.3390/en3091529

L. W. Lake, Enhanced Oil Recovery, 1 ed. Englewood Cliffs, N.J., USA: Prentice Hall, 1989.

G. Kun, L. Hailong, and Y. Zhixin, “In-situ heavy and extra-heavy oil recovery: A review,” Fuel, vol. 185, pp. 886–902, 2016. https://doi.org/10.1016/j.fuel.2016.08.047

P. Singh and F. Geuzebroek, “Guideline For Development of CO2 Capture, Transport and EOR Integrated System For UAE,” in The Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 2017. https://doi.org/10.2118/188556-MS

M. K. Liu, A. I. Andrianov, and W. R. Rossen, “Sweep efficiency in CO2 foam simulations with oil,” in SPE EUROPEC/EAGE Annual Conference and Exhibition, Vienna, Austria, 2011. https://doi.org/10.2118/142999-MS

S. Sett, S. I. Karakashev, S. K. Smoukov, and A. L. Yarin, “Ion specific effects in foams,” Advances in Colloid and Interface Science, vol. 225, pp. 461–472, 2015. https://doi.org/10.1016/j.cis.2015.08.007

Y. Zhao, Y. Zhang, X. Lei, Y. Zhang, and Y. Song, “CO2 flooding enhanced oil recovery evaluated using magnetic resonance imaging technique,” Energy, vol. 203, p. 117878, 2020. https://doi.org/10.1016/j.energy.2020.117878

S. Ahmed, K. A. Elraies, I. M. Tan, and M. R. Hashmet, “Experimental investigation of associative polymerperformance for CO2 foam enhanced oil recovery,” Journal of Petroleum Science and Engineering, vol. 157, pp. 971–979, 2017. https://doi.org/10.1016/j.petrol.2017.08.018

S. Liu, D. L. Zhang, W. Yan, M. Puerto, G. J. Hirasaki, and C. A. Miller, “Favorable Attributes of Alkaline-Surfactant-Polymer Flooding,” SPE Journal, vol. 13, no. 1, pp. 5–16, 2008. https://doi.org/10.2118/99744-PA

M. Buchgraber, T. Clemens, L. M. Castanier, and A. R. Kovscek, “The displacement of viscous oil by associative polymer solutions,” in SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 2009. https://doi.org/10.2118/122400-MS

M. J. Rosen and J. T. Kunjappu, Surfactants and Interfacial Phenomena. Hoboken, N.J., USA: Wiley Interscience, 2012. https://doi.org/10.1002/9781118228920

J. F. Casteel and N. F. Djabbarah, “Sweep Improvement in CO2 Flooding by Use of Foaming Agents,” SPE Reservoir Engineering, vol. 3, no. 4, pp. 1186–1192, 1988. https://doi.org/10.2118/14392-PA

A. U. Rognmo, N. Al-Khayyat, S. Heldal, I. Vikingstad, ;yvind Eide, S. B. Fredriksen, Z. P. Alcorn, A. Graue, S. L. Bryant, A. R. Kovscek, and M. A. Fern?, “Performance of Silica Nanoparticles in CO2 Foam for EOR and CCUS at Tough Reservoir Conditions,” SPE Journal, vol. 25, no. 1, p. 406–415, 2020. https://doi.org/10.2118/191318-PA

L. Sun, B. Bai, B. Wei, W. Pu, P. Wei, D. Li, and C. Zhang, “Recent advances of surfactant-stabilized N2/CO2 foams in enhanced oil recovery,” Fuel, vol. 241, pp. 83–93, 2019. https://doi.org/10.1016/j.fuel.2018.12.016

S. Li, Q. Wang, and Z. Li, “Stability and Flow Properties of Oil-Based Foam Generated by CO2,” SPE Journal, vol. 25, no. 1, p. 416–431, 2020. https://doi.org/10.2118/199339-PA

C. S. Boeije and W. R. Rossen, “SAG foam flooding in carbonate rocks,” Journal of Petroleum Science and Engineering, vol. 171, pp. 843–853, 2018. https://doi.org/10.1016/j.petrol.2018.08.017

L. Lang, H. Li, X. Wang, and N. Liu, “Experimental study and field demonstration of air-foam flooding for heavy oil EOR,” Journal of Petroleum Science and Engineering, vol. 185, p. 106659, 2020. https://doi.org/10.1016/j.petrol.2019.106659

A. Shabib-Asl, M. A. Ayoub, and K. A. Elraies, “A new hybrid technique using low salinity water injection and foam flooding for enhanced oil recovery in sandstone rock,” Journal of Petroleum Science and Engineering, vol. 174, pp. 716–728, 2019. https://doi.org/10.1016/j.petrol.2018.11.035

A. M. AlSumaiti, M. R. Hashmet, W. S. AlAmeri, and E. Anto-Darkwah, “Laboratory Study of CO2 Foam Flooding in High Temperature, High Salinity Carbonate Reservoirs Using Co-injection Technique,” Energy & Fuels, vol. 32, no. 2, pp. 1416–1422, 2018. https://doi.org/10.1021/acs.energyfuels.7b03432

B. Li, H. Li, A. Cao, and F. Wang, “Effect of surfactant concentration on foam texture and flow characteristics in porous media,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 560, pp. 189–197, 2019. https://doi.org/10.1016/j.colsurfa.2018.10.027

A. M. Hassan, M. Ayoub, M. Eissa, E. W. Al-Shalabi, A. Almansour, and A. Alquraishi, “Foamability and foam stability screening for smart water assisted foam flooding: A new hybrid eor method. iptc-22475-ms,” in International Petroleum Technology Conference, Riyadh, Saudi Arabia, 2022. https://doi.org/10.2523/IPTC-22475-MS

M. H. He, Z. Sun, Y. Chen, Y. Hu, X. Li, and Y. Zhou, “Study of plugging capability and seepage characteristics of air foam flooding in low permeability reservoirs,” in SPE Europec, Virtual, 2020. https://doi.org/10.2118/200605-MS

D. Xiong, “Experimental investigation of foam flooding performance in bulk and porous media for carbonates under harsh conditions,” in The SPE Western Regional Meeting, Bakersfield, California, USA, 2022. https://doi.org/10.2118/209326-MS

X. Li, X. Chen, Z. Xu, and C. Pu, “A Novel Foam Flooding for Enhanced Oil Recovery in Fractured LowPermeability Reservoirs: Performance Evaluation and Mechanism Study,” SPE Journal, vol. 27, no. 4, pp. 2408–2424, 2022. https://doi.org/10.2118/209623-PA

W. Yan, “Foam for Mobility Control in Alkaline/ Surfactant Enhanced Oil Recovery Process,” PhD Thesis, Rice University, Houston, Texas, 2006.

K. Ma, “Transport of surfactant and foam in porous media for enhanced oil recovery processes,” PhD Thesis, Rice University, Houston, Texas, 2013.

J.-L. Salager, A. M. Forgiarini, R. E. Antón, and L. Quintero, “Available Know-how in Transforming an Emulsified Drilling Fluid to be removed from unwanted location into a low-viscosity Single Phase System,” Energy & Fuels, vol. 26, no. 7, pp. 4078–4085, 2012. https://doi.org/10.1021/ef300260v

C. Negin, S. Ali, and Q. Xie, “Most Common Surfactants Employed in Chemical Enhanced Oil Recovery,” Petroleum, vol. 3, no. 2, pp. 197–211, 2016. https://doi.org/10.1016/j.petlm.2016.11.007

W. Wolf and T. Feijtel, “TerrestrialF Risk Assessment for Linear Alkyl Benzene Sulfonate (LAS) in Sludge-Amended Soils,” Chemosphere, vol. 36, no. 6, pp. 1319–1343, 1998. https://doi.org/10.1016/S0045-6535(97)10021-2

E. Smulders, W. von Rybinski, E. Sung, W. Rähse, J. Steber, F. Wiebel, and A. Nordskog, “Laundry Detergents,” in Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley & Sons, Ltd, 2007. https://doi.org/10.1002/14356007.a08_315.pub2

Petróleos de Venezuela S.A PDVSA INTEVEP, “Procedimientos metodológicos empleados para las pruebas de desplazamiento,” PDVSA INTEVEP, Venezuela, Manual técnico, 2008.

P. Shen, J. Wang, S. Yuan, T. Zhong, and X. Jia, “Study of enhanced-oil-recovery mechanism of alkali/surfactant/polymer flooding in porous media from experiments,” SPE Journal - SPE J, vol. 14, pp. 237–244, 2009. https://doi.org/10.2118/126128-PA

K. Shinoda, “Shinoda,” The Journal of Physical Chemistry, vol. 85, no. 22, p. 3311 – 3312, 1981. https://doi.org/10.1021/j150622a021

Descargas

Publicado

01-10-2023

Cómo citar

Hernández, I. C., & Pereira, J. (2023). Influencia de la formulación de espumas en medios porosos para procesos de recuperación mejorada de hidrocarburos. Revista Ingeniería UC, 30(1), 3–13. https://doi.org/10.54139/revinguc.v30i1.288

Número

Sección

Artículos