Review. Photocatalytic paintings for air decontamination

Authors

  • Yhosmary Franco Laboratorio de Petróleo, Hidrocarburos y Derivados (PHD), Facultad Experimental de Ciencias y Tecnología FACYT. Universidad de Carabobo. Valencia, Venezuela.
  • Guillermo Centeno Bordones Laboratorio de Petróleo, Hidrocarburos y Derivados (PHD), Facultad Experimental de Ciencias y Tecnología FACYT. Universidad de Carabobo. Valencia, Venezuela. https://orcid.org/0000-0003-1436-4764
  • Juan Pereira Laboratorio de Petróleo, Hidrocarburos y Derivados (PHD), Facultad Experimental de Ciencias y Tecnología FACYT. Universidad de Carabobo. Valencia, Venezuela. https://orcid.org/0000-0003-4600-726X

DOI:

https://doi.org/10.54139/revinguc.v29i3.286

Keywords:

heterogeneous photocatalysis, photocatalytic paint, titanium dioxide, air pollution control, nanomaterial

Abstract

In recent years, there has been significant interest in photocatalytic technology as
an alternative for chemical and biological decontamination of the air. Advanced oxidation
processes (AOP) such as heterogeneous photocatalysis is a process that is characterized by the
use of a semiconductor that is susceptible to being activated by ultraviolet-visible radiation
(UV/VIS), presenting redox reactions that are capable of mineralizing environmental
contaminants and producing substances harmless One of the emerging applications of
heterogeneous photocatalysis has been the incorporation of photocatalysts based on titanium
dioxide nanoparticles into architectural paints for exteriors and interiors, providing them with
self-cleaning, disinfectant and air decontaminating properties in situ. These photocatalytic paints
are an innovative self-sustaining technology, since they have the ability to use solar radiation or
artificial lighting of interior environments as an energy source, for the oxidation of volatile
organic compounds (VOC), gaseous phase pollutants such as NOx, COx, SOx and the elimination
of microorganisms. This review shows recent research on the synthesis, properties and
applications of photocatalytic paints, as well as their challenges in air decontamination.

Downloads

Download data is not yet available.

References

Asamblea General ONU, A/HRC/48L.23/Rev.1 Derecho a un ambiente sin riegos, limpio, saludable y sostenible, Consejo de Derechos Humanos, vol. 14090, Ginebra, 2021.

D. Arce, F. Lima, M. Orellana, J. Ortega, C. Sellers, y P. Ortega, “Descubriendo patrones de comportamiento entre contaminantes del aire: Un enfoque de minería de datos,” Enfoque UTE, vol. 9, no. 4, pp. 168–179, 2018. https://doi.org/10.29019/enfoqueute.v9n4.411

X. Querol, La calidad del aire en las ciudades. Un reto mundial, 1era ed. Madrid: Fundación Gas Natural Fenosa, 2018.

Asamblea General ONU, Asamblea General, Boletín la Soc. Geológica Mex., vol. 4, no. 1, Ginebra, 1908.

F. Tames y H. A. Carreras, “Evaluación de la contaminación del aire en ambientes internos de viviendas de zonas urbanas, periurbanas y rurales de la provincia de córdoba,” Tesis doctoral, Universidad Nacional de Córdoba, Argentina, 2019.

ECOPAINT IBERICA S.L., “Pinturas Fotocatalíticas,” in Boletín informativo KEIM. Barcelona: Artitextura, 2015.

E. Botella Cereceda, “Síndrome del edificio enfermo,” Master universitario en prevención de riesgos laborales, Universidad Miguel Hernández, España, 2020.

J. S. Silva y M. A. Fernandes, “Discusión del síndrome del edificio enfermo en trabajadores de la salud,” Rev. Cubana Enferm., vol. 36, no. 2, pp. 1–16, 2020.

C. He, J. Cheng, X. Zhang, M. Douthwaite, S. Pattisson, and Z. Hao, “Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources,” Chem. Rev., vol. 119, no. 7, pp. 4471–4568, 2018. https://doi.org/10.1021/acs.chemrev.8b00408

Y. Lu, M. Chen, T. Huang, Y. Huang, J.-j. Cao, H. Li, W. Ho, and S. C. Lee, “Oxygen vacancy-dependent photocatalytic activity of well-defined Bi2Sn2O7 – x hollow nanocubes for NOx removal,” Environ. Sci. Nano, vol. 8, no. 7, p. 1927–1933, 2021. https://doi.org/10.1039/D1EN00260K

Asamblea General ONU, A/HRC/RES/45/30. Derechos del niño: hacer efectivos los derechos del niño a través de un medio ambiente saludable, Consejo de Derechos Humanos, vol. 13335, Ginebra, 2020.

W. Tsai, “An overview of health hazards of volatile organic compounds regulated as indoor air pollutants,” Rev Env. Heal., vol. 34, no. 1, pp. 81–89, 2018. https://doi.org/10.1515/reveh-2018-0046

Organización Mundial de la Salud, “Directrices mundiales de la oms sobre la calidad del aire: partículas en suspensión (PM2;5 y PM10), ozono, dióxido de nitrógeno, dióxido de azufre y monóxido de carbono,” Organización Mundial de la Salud, Ginebra, resumen ejecutivo, 2021.

M. Korc y M. Maisonet, Directrices para la elaboración de planes de acción locales para mejorar la calidad del aire, OPS/OMS-CEPIS/Pub/02.75, 2002.

ONU, Programa de las Naciones Unidas para el Medio Ambiente (2019), Perspectivas del Medio Ambiente Mundial, GEO 6., Nairobi, 2019.

M. S. Hernández Laverde y G. A. Prieto Suarez, “El papel de la Fotocatálsis en la Protección Ambiental y Química Verde,” Investig. Joven, vol. 4, no. 1, p. 40–44, 2017.

D. Almazán, F. Raya, F. Remaut, R. Viñas, Á. Sitjá, y D. Pellicer, “La isla fotocatalítica. elementos constructivos descontaminantes aplicados sobre infraestructuras,” in I Congreso Edificios Inteligentes, 2014, pp. 1–11.

D. Almazán, Libro Blanco de la Fotocatálisis. Tecnología, Aplicaciones, Medición y FAQ, 1era ed. Asociación Ibérica de la Fotocatálisis, 2020.

A. Ugarteburi, “Optimización de la reología de componentes fotocatalíticos para aplicaciones avanzadas en elementos de fachada,” Tesis doctoral, Universitat Politècnica de Catalunya. Departament d’Enginyeria Civil i Ambiental, España, 2018.

Y. Hunge, A. Yadav, and B. Mohite, “Basics of Photocatalysis and Different Strategy for Enhancing the Photocatalytic Efficiency,” Am. J. Eng. Appl. Sci., vol. 13, no. 2, pp. 265–268, 2020. https://doi.org/10.3844/ajeassp.2020.265.268

M. C. Nevarez, P. J. Espinoza, F. J. Quiroz, y O. Bunsho, “Fotocatálisis: inicio, actualidad y perspectiva a través del TiO2,” Av. en química, vol. 12, no. 2-3, pp. 45–59, 2018.

A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, pp. 37–38, 1972. https://doi.org/10.1038/238037a0

S. N. Frank and A. J. Bard, “Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder,” J. Am. Chem. Soc., vol. 99, no. 1, pp. 303–304, 1977. https://doi.org/10.1021/ja00443a081

J. Huepe, “Desarrollo y evaluación de una pintura fotocatalítica para disminuir nox presentes en el aire,” Memoria para optar al título de Ingeniero Civil Químico, Universidad de Chile, Chile, 2014.

Y. Hunge and A. Yadav, “Basics and advanced developments in photocatalysis – a review,” Int. J. Hydrol., vol. 2, no. 4, pp. 539–540, 2018. https://doi.org/10.15406/ijh.2018.02.00122

M. Ouzzine, “Nanoparticulas de TiO2 para la oxidación fotocatalítica de propeno en fase gas a baja concentración,” Tesis doctoral, Universidad de Alicante, España, 2014.

K. Hashimoto, H. Irie, and A. Fujishima, “TiO2 Photocatalysis: A Historical Overview and Future Prospects,” Jpn. J. Appl. Phys., vol. 44, no. 12, p. 8269–8285, 2005. https://doi.org/10.1143/JJAP.44.8269

M. Faraldos Izquierdo, “Fotocatálisis: nanomateriales para combatir la contaminación y obtener energía,” Boletín del Grup. Español del Carbón, no. 41, pp. 9–11, 2016.

G. Centeno, “Fotocatálisis solar: una tecnología prometedora para el tratamiento de materia orgánica y desinfección de aguas,” Cienc. en Revoluc., vol. 7, no. 21, pp. 73–86, 2021. https://doi.org/10.5281/zenodo.5722065

J. Zhang, B. Tian, L. Wang, M. Xing, and J. Lei, “Photocatalysis: Fundamentals, Materials and Applications,” in Lecture Notes in Chemistry, 100, 1st ed. Singapore: Springer Singapore, 2018.

L. Jing, C. Chen, and T. An, “Environmental photocatalysis,” Chinese J. Catal., vol. 41, no. 10, p. 1439, 2020. https://doi.org/10.1016/S1872-2067(20)63645-2

M. B. Tahir, M. Sohaib, M. Sagir, and M. Rafique, “Role of Nanotechnology in Photocatalysis,” Encycl. Smart Mater., vol. 2, pp. 578–589, 2022. https://doi.org/10.1016/B978-0-12-815732-9.00006-1

F. Salvadores, M. Reli, and O. M. Alfano, “Efficiencies Evaluation of Photocatalytic Paints Under Indoor and Outdoor Air Conditions,” Frotiers Chem., vol. 8, p. 551710, 2020. https://doi.org/10.3389/fchem.2020.551710

A. Gandolfo, V. Bartolomei, D. Truffier-Boutry, B. Temime-Roussel, G. Brochard, V. Bergé, H. Worthama, and S. Gligorovski, “The impact of photocatalytic paint porosity on indoor NOx and HONO levels,” R. Soc. Chem., vol. 22, no. 2, pp. 589– 598, 2020. https://doi.org/10.1039/c9cp05477d

S. M. de Amorim, J. C. Sapatieri, D. Esteves Moritz, M. Di Domenico, L. Alves da Costa Laqua, C. D. Moura-Nickel, G. M. Falcão Aragão, and R. d. F. Peralta Muniz Moreira, “Antifungal and Photocatalytic Activity of Smart Paint Containing Porous Microspheres of TiO2,” Mat. Res., vol. 22, no. 6, 2019. https://doi.org/10.1590/1980-5373-MR-2019-0470

J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu, “Photocatalysis fundamentals and surface modification of TiO2 nanomaterials,” Cuihua Xuebao/Chinese J. Catal., vol. 36, no. 12, pp. 2049–2070, 2015. https://doi.org/10.1016/S1872-2067(15)60999-8

T. Li, Z. Shen, Y. Shu, X. Li, C. Jiang, and W. Chen, “Facet-dependent evolution of surface defects in anatase TiO2 by thermal treatment: implications for environmental applications of photocatalysis,” Environ. Sci. Nano, no. 6, pp. 1740–1753, 2019. https://doi.org/10.1039/C9EN00264B

I. M. Low, H. Albetran, V. De la Prida, and F. Yam, Nanostructured Titanium Dioxide in Photocatalysis, 1st ed. Singapore: Jenny Stanford Publishing Pte. Ltd., 2021.

P. Nyamukamba, O. Okoh, H. Mungondori, R. Taziwa, and S. Zinya, “Synthetic methods for titanium dioxide nanoparticles: A review,” in Titanium Dioxide, D. Yang, Ed. Rijeka: IntechOpen, 2018, ch. 8. https://doi.org/10.5772/intechopen.75425

Z. Z. Fan Wu and A. L. Hicks, “Life Cycle Impact of Titanium Dioxide Nanoparticle Synthesis through Physical, Chemical, and Biological Routes,” Environ. Sci. Technol., vol. 53, no. 8, pp. 4078–4087, 2019. https://doi.org/10.1021/acs.est.8b06800

C. Saiwan, S. Krathong, T. Anukulprasert, and I. E. O’rear, “Nano-titanium dioxide synthesis in AOT microemulsion system with salinity scan,” J. Chem. Eng. Japan, vol. 37, no. 2, pp. 279–285, 2004.

S. Weon, F. He, and W. Choi, “Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: Visible light utilization and catalyst deactivation,” Environ. Sci. Nano, vol. 6, no. 11, pp. 3185–3214, 2019. https://doi.org/10.1039/C9EN00891H

A. Lee, J. A. Libera, R. Z. Waldman, A. Ahmed, J. R. Avila, J. W. Elam, and S. B. Darling, “Conformal Nitrogen-Doped TiO2 Photocatalytic Coatings for Sunlight-Activated Membranes,” Adv. Sustain. Syst., vol. 1, no. 1-2, p. 1600041, 2017. https://doi.org/10.1002/adsu.201600041

F. Salvadores, O. M. Alfano, and M. M. Ballari, “Kinetic study of air treatment by photocatalytic paints under indoor radiation source: Influence of ambient conditions and photocatalyst content,” , vol. 268, p. 118694, 2020. https://doi.org/10.1016/j.apcatb.2020.118694

M. Hosseini-Zori and Z. M. shourijeh, “Synthesis, characterization and investigation of photocatalytic activity of transition metal-doped TiO2 nanostructures,” Progress in Color, Colorants and Coatings, vol. 11, no. 4, p. 209–220, 2018. https://doi.org/10.30509/pccc.2018.76671

D. Kotzias, V. Binas, and G. Kiriakidis, “Smart Surfaces: Photocatalytic Degradation of Priority Pollutants on TiO2-Based Coatings in Indoor and Outdoor Environments—Principles and Mechanisms,” Materials (Basel)., vol. 15, no. 2, p. 402, 2022. https://doi.org/10.3390/ma15020402

M. Długok˛ecka, J. Łuczak, Żaneta Polkowska, and A. Zaleska-Medynska, “The effect of microemulsion composition on the morphology of Pd nanoparticles deposited at the surface of TiO2 and photoactivity of Pd – TiO2,” Appl. Surf. Sci., vol. 405, pp. 220–230, 2017. https://doi.org/10.1016/j.apsusc.2017.02.014

A. A. Rodríguez-Rodríguez, S. MartínezMontemayor, C. C. Leyva-Porras, F. E. Longoria-Rodríguez, E. Martínez-Guerra, and M. Sánchez-Domínguez, “CoFe2O4 – TiO2 Hybrid Nanomaterials: Synthesis Approaches Based on the Oil-in-Water Microemulsion Reaction Method,” J. Nanomater., vol. 2017, pp. 1–15, 2017. https://doi.org/10.1155/2017/2367856

M. Karbassi, P. Zarrintaj, A. Ghafarinazari, M. Saeb, M. R. Mohammadi, A. Yazdanpanah, J. Rajadas, and M. Mozafari, “Microemulsion-based synthesis of a visible-light-responsive Si-doped TiO2 photocatalyst and its photodegradation efficiency potential,” Mater. Chem. Phys., vol. 220, pp. 374–382, 2018. https://doi.org/10.1016/j.matchemphys.2018.08.078

Z. Liu, X. Xu, J. Fang, X. Zhu, J. Chu, , and B. Li, “Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation,” Appl. Surf. Sci., vol. 258, no. 8, pp. 3771–3778, 2012. https://doi.org/10.1016/j.apsusc.2011.12.025

A. I. Bulavchenko, N. O. Shaparenko, and M. G. Demidova, “Synthesis, characterization, and electrophoretic concentration of titanium dioxide nanoparticles in AOT microemulsions,” Electrophoresis, vol. 38, no. 13–14, pp. 1678–1684, 2017. https://doi.org/10.1002/elps.201600542

J. Yuenyongsuwan, N. Nithiyakorn, P. Sabkird, E. A. O’Rear, and T. Pongprayoon, “Surfactant effect on phase-controlled synthesis and photocatalyst property of TiO2 nanoparticles,” Mater. Chem. Phys., vol. 214, pp. 330–336, 2018. https://doi.org/10.1016/j.matchemphys.2018.04.111

X. Cui, J. Wang, X. Zhang, Q. Wang, M. Song, and J. Chai, “Preparation of Nano-TiO2 by a SurfactantFree Microemulsion-Hydrothermal Method and Its Photocatalytic Activity,” Langmuir, vol. 35, no. 28, pp. 9255–9263, 2019. https://doi.org/10.1021/acs.langmuir.9b01392

J. Zhang, X. Hou, Z. Pang, Y. Cai, H. Zhou, P. Lv, and Q. Wei, “Fabrication of hierarchical TiO2 nanofibers by microemulsion electrospinning for photocatalysis applications,” Ceram. Int., vol. 43, no. 17, pp. 15 911–15 917, 2017. https://doi.org/10.1016/j.ceramint.2017.08.166

J. Laisney, A. Rosset, V. Bartolomei, D. Predoi, D. Truffier-Boutry, S. Artous, V. Bergé, G. Brochard, and I. Michaud-Soret, “TiO2 nanoparticles coated with bio-inspired ligands for the safer-by-design development of photocatalytic paints,” Environ. Sci. Nano, vol. 8, no. 1, pp. 297–310, 2021. https://doi.org/10.1039/D0EN00947D

A. Rosset, V. Bartolomei, J. Laisney, N. Shandilya, H. Voisin, J. Morin, I. Michaud-Soret, I. Capron, H. Wortham, G. Brochard, V. Bergé, M. Carriere, F. Dussert, O. L. Bihan, C. Dutouquet, A. Benayad, D. Truffier-Boutry, S. Clavaguera, and S. Artous, “Towards the development of safer by design TiO2based photocatalytic paint: impacts and performances,” Environ. Sci. Nano, vol. 8, no. 3, pp. 758–772, 2021. https://doi.org/10.1039/D0EN01232G

B. Zhenfeng and L. Hexing, “Solvothermal alcoholysis preparation of TiO2 with tailored structures and enhanced activity in environmental and energy photocatalysis,” in Current Developments in Photocatalysis and Photocatalytic Materials, X. Wang, M. Anpo, and X. Fu, Eds. Shanghai: Elsevier Inc., 2020, pp. 107–126. https://doi.org/10.1016/B978-0-12-819000-5.00008-4

J.-H. Kim, S. M. Hossain, H.-J. Kang, H. Park, L. Tijing, G. W. Park, N. Suzuki, A. Fujishima, Y.-S. Jun, H. K. Shon, and G.-J. Kim, “Hydrophilic/Hydrophobic Silane Grafting on TiO2 Nanoparticles: Photocatalytic Paint for Atmospheric Cleaning,” Catalysts, vol. 11, no. 2, p. 193, 2021. https://doi.org/10.3390/catal11020193

J. Chen, M. Wang, J. Han, and R. Guo, “TiO2 nanosheet/NiO nanorod hierarchical nanostructures: p–n heterojunctions towards efficient photocatalysis,” J. Colloid Interface Sci., vol. 562, pp. 313–321, 2020. https://doi.org/10.1016/j.jcis.2019.12.031

J. Shi, W. Huang, H. Zhu, J. Xiong, H. Bei, X. Wei, and S. Wang, “Modified TiO2 particles for heterogeneous photocatalysis under solar irradiation,” Mater. Lett., vol. 279, p. 128472, 2020. https://doi.org/10.1016/j.matlet.2020.128472

C. H. A. Tsang, K. Li, Y. Zeng, W. Zhao, T. Zhang, Y. Zhan, R. Xie, D. Y. C. Leung, and H. Huang, “Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast,” Environ. Int., vol., vol. 125, p. 200–228, 2019. https://doi.org/10.1016/j.envint.2019.01.015

W. Wang, G. Li, D. Xia, T. An, H. Zhao, and P. K. Wong, “Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges,” Environ. Sci. Nano, vol. 4, no. 5, pp. 782–799, 2017. https://doi.org/10.1039/C7EN00063D

P. Betancur, V. Hernández, y R. Buitrago, “Nanopartículas para materiales antibacterianos y aplicaciones del dióxido de titanio,” Rev. Cuba. Investig. Biomédicas, vol. 35, no. 4, pp. 387–402, 2016.

J. Li, B. Xie, K. Xia, Y. Li, J. Han, and C. Zhao, “Enhanced antibacterial activity of silver doped titanium dioxide-chitosan composites under visible light,” Materials (Basel)., vol. 11, no. 8, p. 1403, 2018. https://doi.org/10.3390/ma11081403

C. Hu, “Solar Photocatalytic Disinfection by NanoAgBased Photocatalyst,” in Advances in Photocatalytic Disinfection, Green Chemistry and Sustainable Technology, T. An, H. Zhao, and P. K. Wong, Eds. Berlin, Heidelberg: Springer, 2017, pp. 129–153. https://doi.org/10.1007/978-3-662-53496-0_6

X. Zheng, Z. peng Shen, C. Cheng, L. Shi, R. Cheng, and D. hai Yuan, “Photocatalytic disinfection performance in virus and virus/bacteria system by CuTiO2 nanofibers under visible light,” Environ. Pollut., vol. 237, pp. 452–459, 2018. https://doi.org/10.1016/j.envpol.2018.02.074

S. Mathew, P. Ganguly, S. Rhatigan, V. Kumaravel, C. Byrne, S. J. Hinder, J. Bartlett, M. Nolan, and S. C. Pillai, “Cu-Doped TiO2: Visible light assisted photocatalytic antimicrobial activity,” Appl. Sci. MDPI, vol. 8, no. 11, p. 2067, 2018. https://doi.org/10.3390/app8112067

R. Bucuresteanu, L.-M. Ditu, M. Ionita, I. Calinescu, V. Raditoiu, B. Cojocaru, L. O. Cinteza, C. Curutiu, A. M. Holban, M. Enachescu, L.-B. Enache, G. Mustatea, V. Chihaia, A. Nicolaev, E.-L. Borcan, and G. Mihaescu, “Preliminary Study on Light- Activated Antimicrobial Agents as Photocatalytic Method for Protection of Surfaces with Increased Risk of Infections,” Materials, vol. 14, no. 18, p. 5307, 2021. https://doi.org/10.3390/ma14185307

G. D. Falco, A. Porta, A. M. Petrone, P. D. Gaudio, A. E. Hassanin, M. Commodo, P. Minutolo, A. Squillace, and A. D’Anna, “Antimicrobial activity of flame-synthesized nano-TiO2 coatings,” Environmental Science: Nano, vol. 4, no. 5, pp. 1095– 1107, 2017. https://doi.org/10.1039/C7EN00030H

W. Wang, D. Xia, and P. K. Wong, “Photocatalytic Disinfection by Metal-Free Materials,” in Advances in Photocatalytic Disinfection, Green Chemistry and Sustainable Technology, T. An, H. Zhao, and P. K. Wong, Eds. Berlin, Heidelberg: Springer, 2017, pp. 155–175. https://doi.org/10.1007/978-3-662-53496-0_7

S. M. Zacarías, S. Marchetti, O. M. Alfano, and M. de los Milagros Ballari, “Photocatalytic paint for fungi growth control under different environmental conditions and irradiation sources,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 364, pp. 76–87, 2018. https://doi.org/10.1016/j.jphotochem.2018.05.034

M. Janus, E. Kusiak-Nejman, P. Rokicka-Konieczna, A. Markowska-Szczupak, K. Zaj˛ac, and A. W. Morawski, “Bacterial Inactivation on Concrete Plates Loaded with Modified TiO2 Photocatalysts under Visible Light Irradiation,” Molecules, vol. 24, no. 17, p. 3026, 2019. https://doi.org/10.3390/molecules24173026

V. S. Mohite, M. M. Darade, R. K. Sharma, and S. H. Pawar, “Nanoparticle Engineered Photocatalytic Paints: A Roadmap to Self-Sterilizing against the Spread of Communicable Diseases,” Catalysts, vol. 12, no. 3, p. 326, 2022. https://doi.org/10.3390/catal12030326

A. Gandolfo, L. Rouyer, H. Wortham, and S. Gligorovski, “The influence of wall temperature on NO2 removal and HONO levels released by indoor photocatalytic paints,” Appl. Catal. B Environ., vol. 209, no. 2, pp. 429–436, 2017. https://doi.org/10.1016/j.apcatb.2017.03.021

F. Salvadores, O. M. Alfano, and M. M. Ballari, “Assessment of the indoor air purification by photocatalytic paints,” Lat. Am. Appl. Res., vol. 50, no. 5, pp. 71–76, 2020. https://doi.org/10.52292/j.laar.2020.352

K. H. Han, J. S. Zhang, and B. Guo, “Toward effective design and adoption of catalyst-based filter for indoor hazards: Formaldehyde abatement under realistic conditions,” J. Hazard. Mater., vol. 331, p. 161–170, 2017. https://doi.org/10.1016/j.jhazmat.2017.02.021

M. Zhu, Y. Muhammad, P. Hu, B. Wang, Y. Wu, X. Sun, Z. Tong, and Z. Zhao, “Enhanced interfacial contact of dopamine bridged melaminegraphene/TiO2 nano-capsules for efficient photocatalytic degradation of gaseous formaldehyde,” Appl. Catal. B Environ., vol. 232, p. 182–193, 2018. https://doi.org/10.1016/j.apcatb.2018.03.061

S.-H. Liu and W.-X. Lin, “A simple method to prepare g-C3N4 – TiO2/waste zeolites as visible-lightresponsive photocatalytic coatings for degradation of indoor formaldehyde,” Journal of Hazardous Materials, vol. 368, pp. 468–476, 2019. https://doi.org/10.1016/j.jhazmat.2019.01.082

E. B. Lied, C. F. M. Morejon, R. L. de Oliveira Basso, A. P. Trevisan, P. R. S. Bittencourt, and F. L. Fronza, “Photocatalytic degradation of H2S in the gas-phase using a continuous flow reactor coated with TiO2-based acrylic paint,” Environ. Technol. (United Kingdom), vol. 40, no. 17, p. 2276–2289, 2019. https://doi.org/10.1080/09593330.2018.1440010

S. Mahmoud, M. Emam, and W. Hegazy, “Assessment of Hydrogen Sulfide Gas in Petroleum Company and Photocatalytic Degradation Using mesoporous TiO2 Nanostructured Thin Films,” Egypt. J. Chem., vol. 64, no. 10, pp. 5919–5927, 2021. https://doi.org/10.21608/ejchem.2021.68185.3486

A. Velázquez-Palenzuela, K. Dam-Johansen, and J. M. Christensen, “Benchmarking of photocatalytic coatings performance and their activation towards pollutants degradation,” Prog. Org. Coatings, vol. 147, p. 105856, 2020. https://doi.org/10.1016/j.porgcoat.2020.105856

J. Morin, A. Gandolfo, B. Temime-Roussel, G. Brochard, V. Bergé, S. Gligorovski, and H. Wortham, “Key parameters influencing the uptake of m-xylene on photocatalytic paints,” Build. Environ., vol. 179, p. 106979, 2020. https://doi.org/10.1016/j.buildenv.2020.106979

A. Basso, A. P. Battisti, R. d. F. Peralta Muniz Moreira, and H. J. José, “Photocatalytic effect of addition of TiO2 to acrylic-based paint for passive toluene degradation,” Environ. Technol., vol. 41, no. 12, pp. 1568–1579, 2020. https://doi.org/10.1016/j.buildenv.2020.106979

M. Arekhi and M. Jamshidi, “Influences of inorganic binder on photocatalytic oxidation (PCO) and degradation of nano/micro TiO2 containing acrylic composites,” Prog. Org. Coatings, vol. 115, pp. 1–8, 2018. https://doi.org/10.1016/j.porgcoat.2017.10.012

J. Fernandez, “Degradación de óxidos de nitrógeno nox mediante la aplicación de pintura fotocatalítica usando nanopartículas de tio2 para mejorar la calidad del aire,” Trabajo de grado para optar al título de Ingeniero Ambiental, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú, 2020.

Q. L. Yu, Y. Hendrix, S. Lorencik, and H. J. H. Brouwers, “Field study of NOx degradation by a mineral-based air purifying paint,” Build. Environ., vol. 142, pp. 70–82, 2018. https://doi.org/10.1016/j.buildenv.2018.06.014

D. Enea, M. Bellardita, P. Scalisi, G. Alaimo, and L. Palmisano, “Effects of weathering on the performance of self-cleaning photocatalytic paints,” Cem. Concr. Compos., vol. 96, no. July 2017, pp. 77–86, 2019. https://doi.org/10.1016/j.cemconcomp.2018.11.013

D. Pill, P. Wiesen, and J. Kleffmann, “Temperature dependencies of the degradation of NO, NO2 and HONO on a photocatalytic dispersion paint,” Phys. Chem. Chem. Phys., vol. 23, no. 15, p. 9418–9427, 2021. https://doi.org/10.1039/D1CP01157J

R. Han, R. Andrews, C. O’Rourke, S. Hodgen, and A. Mills, “Photocatalytic air purification: Effect of HNO3 accumulation on NOx and VOC removal,” Catal. Today, vol. 380, pp. 105–113, 2021. https://doi.org/10.1016/j.cattod.2021.04.017

D. P. Pedersen, N. Lock, and H. Jensen, “Removing NOx Pollution by Photocatalytic Building Materials in Real-Life: Evaluation of Existing Field Studies,” J. Photocatal., vol. 2, no. 2, pp. 84–96, 2021. http://dx.doi.org/10.2174/2665976X02666210308151731

P. Homa, B. Tryba, and A. Ge¸sikiewicz-Puchalska, “Impact of paint matrix composition and thickness of paint layer on the activity of photocatalytic paints,” Polish J. Chem. Technol., vol. 19, no. 1, p. 113–119, 2017. https://doi.org/10.1515/pjct-2017-0016

A. H. Monfared and M. Jamshidi, “Effects of photocatalytic activity of nano TiO2 and PAni/TiO2 nanocomposite on the physical/mechanical performances of acrylic pseudo paints,” Prog. Org. Coatings, vol. 136, p. 105300, 2019. https://doi.org/10.1016/j.porgcoat.2019.105300

A. Bonnefond, E. González, J. Asua, J. Leiza, E. Ieva, G. Brinati, S. Carella, A. Marrani, A. Veneroni, J. Kiwi, C. Pulgarin, and S. Rtimi, “Stable photocatalytic paints prepared from hybrid core-shell fluorinated/acrylic/TiO2 waterborne dispersions,” Crystals, vol. 6, no. 10, p. 136, 2016. https://doi.org/10.3390/cryst6100136

A. Gandolfo, S. Marque, B. Temime-Roussel, R. Gemayel, H. Wortham, D. Truffier-Boutry, V. Bartolomei, and S. Gligorovski, “Unexpectedly high levels of organic compounds released by indoor photocatalytic paints,” Enviromental Sci. Technol., vol. 52, no. 19, p. 11328–11337, 2018. https://doi.org/10.1021/acs.est.8b03865

J. Morin, A. Gandolfo, B. Temime-Roussel, R. Strekowski, G. Brochard, V. Bergé, S. Gligorovski, and H. Wortham, “Application of a mineral binder to reduce VOC emissions from indoor photocatalytic paints,” Build. Environ., vol. 156, pp. 225–232, 2019. https://doi.org/10.1016/j.buildenv.2019.04.031

D. Truffier-Boutry, B. Fiorentino, V. Bartolomei, R. Soulas, O. Sicardy, A. Benayad, J.-F. Damlen- court, B. Pépin-Donat, C. Lombard, A. Gandolfo, H. Wortham, G. Brochard, A. Audemard, L. Porcar, G. Gebel, and S. Gligorovski, “Characterization of photocatalytic paints: a relationship between the photocatalytic property – release of NanoParticles and Volatile Organic Compounds,” Environ. Sci. Nano, vol. 4, no. 10, pp. 1998–2009, 2017. https://doi.org/10.1039/C7EN00467B

F. Xu, T. Wang, H. Chen, J. Bohling, A. M. Maurice, L. Wu, and S. Zhou, “Preparation of photocatalytic TiO2-based self-cleaning coatings for painted surface without interlayer,” Progress in Organic Coatings, vol. 113, pp. 1–24, 2017. https://doi.org/10.1016/j.porgcoat.2017.08.005

S. Lyu, H. Hao, X. Li, and X. Lang, “Cooperative TiO2 photocatalysis with TEMPO and Nhydroxysuccinimide for blue light-driven selective aerobic oxidation of amines,” Chemosphere, vol. 262, p. 127873, 2021. https://doi.org/10.1016/j.chemosphere.2020.127873

G. Liu, H. Xia, Y. Niu, X. Zhao, G. Zhang, L. Song, and H. Chen, “Fabrication of self-cleaning photocatalytic durable building coating based on WO3-TNs/PDMS and NO degradation performance,” Chem. Eng. J., vol. 409, p. 128187, 2021. https://doi.org/10.1016/j.cej.2020.128187

G. Liu, H. Xia, W. Zhang, L. Song, Q. Chen, and Y. Niu, “Improvement mechanism of NO photocatalytic degradation performance of selfcleaning synergistic photocatalytic coating under high humidity,” J. Hazard. Mater., vol. 418, p. 126337, 2021. https://doi.org/10.1016/j.jhazmat.2021.126337

A. Velázquez-Palenzuela, H. Wang, N. Yang, K. DamJohansen, and J. M. Christensen, “Preparation of TiO2–based hollow microspheres by spray drying and their use as novel active pigments for photocatalytic coatings,” Prog. Org. Coatings, vol. 160, p. 106518, 2021. https://doi.org/10.1016/j.porgcoat.2021.106518

J. Zhao, W. Li, L. Fan, Q. Quan, J. Wang, and C. Xiao, “Yolk-porous shell nanospheres from siliver-decorated titanium dioxide and silicon dioxide as an enhanced visible-light photocatalyst with guaranteed shielding for organic carrier,” J. Colloid Interface Sci., vol. 534, p. 480–489, 2019. https://doi.org/10.1016/j.jcis.2018.09.052

H. Fu, M. Gong, X. Ning, X. Yang, X. An, Q. Zou, S. Xiong, and D. Han, “Au modified nanosheet-branched TiO2 hollow spheres exhibiting superior performance of adsorption and solar-lightdriven photocatalysis,” Powder Technol., vol. 376, p. 593–603, 2020. https://doi.org/10.1016/j.powtec.2020.08.078

A. K. Priya, R. Suresh, P. S. Kumar, S. Rajendran, D. V. N. Vo, and M. Soto-Moscoso, “A review on recent advancements in photocatalytic remediation for harmful inorganic and organic gases,” Chemosphere, vol. 284, p. 131344, 2021. https://doi.org/10.1016/j.chemosphere.2021.131344

O. Długosz, N. W˛asowicz, K. Szostak, and M. Banach, “Photocatalytic properties of coating materials enriched with bentonite/ZnO/CuO nanocomposite,” Mater. Chem. Phys., vol. 260, p. 124150, 2021. https://doi.org/10.1016/j.matchemphys.2020.124150

A. Malik, M. Muhyuddin, G. Ali, A. Wadood, A. Tauqir, and M. A. Basit, “Bi-efficacious incorporation of Indium in TiO2/PbS based nanocomposites for photocatalytic and solar paint applications,” Sol. Energy, vol. 228, p. 216–225, 2021. https://doi.org/10.1016/j.solener.2021.09.057

Published

2023-04-27

How to Cite

Franco, Y., Centeno Bordones, G., & Pereira, J. (2023). Review. Photocatalytic paintings for air decontamination . Revista Ingeniería UC, 29(3), 233–253. https://doi.org/10.54139/revinguc.v29i3.286