Estimation of the effect of climate change on the flows of the medium-high basin of the Piura River using GCM from CMIP6

Authors

  • Jhon Alberca Programa de Doctorado en Recursos Hídricos, Escuela de Post Grado, Universidad Nacional Agraria La Molina. Lima, Perú https://orcid.org/0000-0003-2334-6963
  • Jesús Mejía Programa de Doctorado en Recursos Hídricos, Escuela de Post Grado, Universidad Nacional Agraria La Molina. Lima, Perú https://orcid.org/0000-0002-9070-3898
  • Edilberto Guevara-Pérez Programa de Doctorado en Recursos Hídricos, Escuela de Post Grado, Universidad Nacional Agraria La Molina. Lima, Perú https://orcid.org/0000-0003-2813-2147

DOI:

https://doi.org/10.54139/revinguc.v29i3.290

Keywords:

Climate change, Piura River, GCM, CMIP6

Abstract

The objective of the present investigation was to analyze the Global Climate Models (GCM) of the CMIP6 to determine the model that allows obtaining values ​​of precipitation and temperature very similar to those registered in the PISCO grid data for the medium-high basin of the Piura River. , and based on said model, estimate the hydrological impacts of climate change on the flows of the intermediate future (2015-2100) that allow identifying the existence of areas vulnerable to flooding in the sector adjacent to the Puente Sánchez Cerro gauging point. Of the 58 GCM, 14 were analyzed for the SSP5-8.5 scenario of the CMIP6 that have information for the study area, obtaining records of precipitation, maximum and minimum temperature, which were corrected by the Statistical Downscaling methodology with the Quantile-mapping procedure. Said information was contrasted with the PISCO data (1981-2016), and the SWAT hydrological model was used to obtain the flows at the Puente Sánchez Cerro Gauging Point, and compare them with the PECHP data (1981-2016).

Downloads

Download data is not yet available.

References

A. Rocha, “La costa norte peruana y su vulnerabilidad frente al Fenómeno de El Niño,” Revista Técnica del Capítulo de Ingeniería Civil del Colegio de Ingenieros del Perú, vol. 8, no. 29, 2006.

N. Andres, F. Vegas, W. Lavado, and M. Zappa, “Water resources and climate change impact modelling on a daily time scale in the Peruvian Andes,” Hydrological Sciences Journal, vol. 59, no. 11, pp. 2043–2059, 2014. https://doi.org/10.1080/02626667.2013.862336

F. Su, Y. Hong, and D. Lettenmaier, “Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin,” Journal of Hydrometeorology, vol. 9, no. 4, pp. 622–640, 2008. https://doi.org/10.1175/2007JHM944. 1

IPCC, ““Cambio Climático 2014: informe de síntesis,” Contribución de los Grupos I, II y III al Quinto Informe de Evaluación del Grupo de Expertos sobre el Cambio Climático,” IPCC, Ginebra, Suiza, Informe técnico, 2014.

T. Barker, ““Climate Change 2007”: An Assessment of the Intergovernmental Panel on Climate Change,” IPCC, Geneva, Switzerland, Tech report, 2007.

S. Ardoin-Bardin, A. Dezetter, E. Servat, J. Paturel, G. Mahé, H. Niel, and C. Dieulin, “Using general circulation model outputs to assess impacts of climate change on runoff for large hydrological catchments in West Africa,” Hydrological Sciences Journal, vol. 54, no. 1, pp. 77–89, 2009. https://doi.org/10.1623/hysj.54.1.77

A. Moya, J. Ortega, and X. Jurado, “Evaluación del Modelo Climático Global MIROC5 y estimaciones de temperatura y precipitaciones para las zonas sur y norte del Perú,” Apuntes de Ciencia & Sociedad, vol. 5, no. 2, pp. 8–15, 2015. https://doi.org/10.18259/acs.2015028

P. Burlando and R. Rosso, “Effects of transient climate change on basin hydrology. 1. Precipitation scenarios for the Arno River, central Italy,” Hydrological Processes, vol. 16, no. 6, pp. 1151–1175, 2002. https://doi.org/10.1002/hyp.1055

P. Burlando and R. Rosso, “Effects of transient climate change on basin hydrology. 2. Impacts on runoff variability in the Arno River, central Italy,” Hydrological Processes, vol. 16, no. 6, pp. 1177–1199, 2002. https://doi.org/10.1002/hyp.1056

K. L. Denman, G. Brasseur, A. Chidthaisong, P. Ciais, P. M. Cox, R. E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, P. L. da Silva Dias, S. C. Wofsy, and X. Zhang, “Couplings Between Changes in the Climate System and Biogeochemistry,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. Miller, Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.

K. McGuffie and A. Henderson-Sellers, A Climate Modelling Primer, 3rd ed. Chichester: Wiley J, Sons, editors, 2005.

A. Dai, “Precipitation characteristics in eighteen coupled climate models,” Journal of Climate, vol. 19, no. 18, pp. 4605–4630, 2006. https://doi.org/10.1175/JCLI3884.1

D. A. Randall, R. A. Wood, S. Bony, R. Colman, T. Fichefet, J. Fyfe, V. Kattsov, A. Pitman, J. Shukla, J. Srinivasan, R. J. Stouffer, A. Sumi, and K. E. Taylor, “Climate Models and Their Evaluation,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. Miller, Eds. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.

G. R. de Piura-ANA-GTZ/PDRS, Proceso de elaboración del plan de gestión de la cuenca del río Piura – Aspectos metodológicos, Folleto 2, 1ra. Ed. ed. Lima, Perú: Editorial y Gráfica EBRA E.I.R.L., 2009.

C. Aybar, W. Lavado, A. Huerta, C. Fernández, F. Vega, E. Sabino, and O. Felipe, “Uso del Producto Grillado PISCO de precipitación en Estudios, Investigaciones y Sistemas Operacionales de Monitoreo y Pronóstico Hidrometeorológico,” SENAMHI, Lima-Perú, Nota Técnica 001 SENAMHI-DHI-2017, 2017.

J. Arnold and N. Fohrer, “SWAT2000: current capabilities and research opportunities in applied watershed modelling,” Hydrological Processes Journal, vol. 19, no. 3, pp. 563–572, 2005. https://doi.org/10.1002/hyp. 5611

K. Abbaspour, E. Rouholahnejad, S. Vaghefi, R. Srinivasan, H. Yang, and B. Klove, “A continental scale hydrology and water quality model for Europe: Calibration and uncertainty of a high- resolution largescale SWAT model,” Journal of Hydrology, vol. 524, pp. 733–752, 2015. https://doi.org/10.1016/j.jhydrol. 2015.03.027

S. N. de Meteorología e Hidrología, “Escenarios climáticos en el Perú para el año 2030,” SENAMHI, Centro de Predicción Numérica, Lima, Informe técnico, 2009.

M. del Ambiente del Perú, “Segunda Comunicación Nacional del Perú a la Convención de Naciones Unidas sobre Cambio Climático,” MINAM, Consejo Nacional del Ambiente, Lima, Informe técnico, 2010.

S. S. Moradkhani, H., “General Review of RainfallRunoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis,” in Hydrological Modelling and the Water Cycle. Water Science and Technology Library, S. Sorooshian, K. Hsu, E. Coppola, B. Tomassetti, M. Verdecchia, and G. Visconti, Eds. Berlin, Heidelberg: Springer, 2009.

Published

2023-02-24

How to Cite

Alberca, J., Mejía, J., & Guevara-Pérez, E. (2023). Estimation of the effect of climate change on the flows of the medium-high basin of the Piura River using GCM from CMIP6. Revista Ingeniería UC, 29(2), 136–144. https://doi.org/10.54139/revinguc.v29i3.290

Issue

Section

Artículos