Mathematical model of electrical conductivity as a function of water flow in soils using Flow Net

Authors

  • David Duarte-González Departamento de Matemáticas, Facultad de Ingeniería, Universidad de Carabobo. Valencia, Venezuela https://orcid.org/0000-0002-8180-0274

DOI:

https://doi.org/10.54139/revinguc.v27i3.293

Keywords:

water, irrigation, spat, content, flow, model, agriculture

Abstract

This article studies and discusses the physical-mathematical relationships that govern electrical conductivity and hydrodynamics in porous soils, involved in agricultural irrigation systems and also in grounding systems. For purposes of optimizing irrigation, use of water resources, determination of suitable land for grounding systems and its inherent precision, the parameters of water content in the soil, energy potential of the water, electrical conductivity and, consequently, the general characteristics of the sensors are a fundamental part of this study, since they represent the basic “raw material” for the development of complex irrigation forecasting systems and grounding systems design, to which as the technique advances, more and more variables and methodologies of monitors and control. Initially, the study will analyze the mathematical models that govern both the water content in the soil, and those related to resistivity; then the link between both fields and the different types of sensors for each case are studied. The main motivation of this study is to lay the foundations to initiate more complex description models through computer-assisted numerical methods, additionally with heuristic techniques, thus taking advantage of the computational power available at this time. At the end of the study, a more technical view is obtained about the hydrodynamic processes involved in agriculture and other technologies, due to the low availability of an increasingly scarce and expensive resource such as water.

Downloads

Download data is not yet available.

References

S. I. Duquea, "Monitoreo y control de variables ambientales mediante una red inalámbrica para agricultura de precisión en invernaderos," Revista Vector, pp. 51-60, 2017.

L. Romero Amondaray, F. M. Piña Figueredo, y M. M. Goire Castilla, "Red de sensores inalámbricos para las casas de cultivos protegidos san josé," Ingeniería Electrónica, Automática y Comunicaciones, vol. 39, no. 1, pp. 16-26, 2018.

J. Briceño, "Manual para la medición de resistividad del suelo," Universidad de Los Andes, vol. 1, no. 1, 2015.

F. Jonard, H. Bogena, D. Caterina, and S. Garre, "Ground-based soil moisture determination," Observation and Measurement, Springer, vol. 1, no. 2, 2018. https://doi.org/10.1007/978-3-662-47871-4_2-1

E. Romero Jiménez, M. García-Valdecasas Ojeda, P. Yeste Donaire, S. R. Gáqmiz-Fortis, Y. Castro-Díez, y M. J. Esteban-Parra, "Estudio comparativo de distintas Bases de Datos de humedad del suelo superficial en la Peninsula Ibérica," in XI Congreso AEC (Asociación Española de Climatología), Cartagena, España, 2018.

J. C. Arcioni y J. F. Giménez, "La ionización de los suelos y las corrientes de los rayos a tierra," Ingeniería Eléctrica 357, Reporte Técnico, 2020.

X. Li, A. Klotzsche, D. Caterina, S. Garré, M. Schwank, H. Bogena, H. Vereecken, A. Monerris, F. Jonard, and C. von Hebel, "Ground-based soil moisture determination," Agrosphäre, Tech. Rep., 2019.

P. F. Gómez, J. O. Gómez, y G. E. Serrano, "Sistema de riego autónomo para pequeños cultivos basado en medición de temperatura y humedad," Revista Politécnica, vol. 13, no. 25, pp. 65-74, 2017. https://doi.org/10.33571/rpolitec.v13n25a5

M. Duran-Pinzón, J. Páez-Arango, y P. J. GarcíaGuarín, "Modelado numérico y análisis experimental para flujos en un medio poroso homogéneo a través de suelos," Iteckne, vol. 15, no. 1, pp. 24-33, 2018. https://doi.org/10.15332/iteckne.v15i1.1961

G. García Talavera, Análisis Fisicomatemático de Redes Eléctricas. Editorial Limusa, 1998.

P. Waller and M. Yitayew, Irrigation and drainage engineering. Springer, 2016. https://doi.org/10.1007/978-3-319-05699-9

S. Adla, N. K. Rai, H. Sri Karumanchi, S. Tripathi, M. Disse, and S. Pande, "Laboratory calibration and performance evaluation of low-cost capacitive and very low-cost resistive soil moisture sensors," Sensors, vol. 20, no. 2, p. 363, 2020. https://doi.org/10.3390/s20020363

N. Sandoval and J. Gomez, "Desarrollo de una aplicación web para registrar la temperatura y humedad del suelo, obtenidos por una red de sensores inalámbricos, utilizando el estándar IEEE 802.15. 4," Semilleros de Investigación, vol. 1, no. 1, 2018.

A. Verruijt, An Introduction to Soil Mechanics. Springer, 2018, vol. 30. https://doi.org/10.1007/978-3-319-61185-3

Published

2020-12-30

How to Cite

Duarte-González, D. (2020). Mathematical model of electrical conductivity as a function of water flow in soils using Flow Net. Revista Ingeniería UC, 27(3), 343–352. https://doi.org/10.54139/revinguc.v27i3.293