Numerical modeling of a debris flow associated with a dam break in the Quillcay sub basin, Ancash, Peru

Authors

DOI:

https://doi.org/10.54139/revinguc.v28i1.4

Abstract

The objective of the research was to show results of a numerical modeling of debris flow, associated with a possible rupture of the Shallap dam, located at the head of the Quillcay river basin, in the department of Ancash, Peru. The modeling used is based on a sequence of chain events, which allowed coupling different numerical models, which simulated a complex process, and then apply methodologies that allow the elaboration of hazard maps. The results obtained show affected areas that vary from 0,82 km2 to 0,87 km2 for each level of risk, most of which are in low to intermediate categories, and are located on the left bank of the Quillcay River, representing 55 % on average of the total estimated area of impact. The results could allow authorities to develop risk management tools associated with the implementation of early warning systems to protect the most vulnerable areas.

Downloads

Download data is not yet available.

References

S. A. Wegner, Lo que el agua se llevó, consecuencias y lecciones del aluvión de Huaraz de 1941. Perú: Corporación Globalmark, Ed. Huaraz, 2014.

J. Klimeš, M. Benešová, V. Vilímek, P. Bouška, and A. Cochachin-Rapre, "The reconstruction of a glacial lake outburst flood using HEC-RAS and its significance for future hazard assessments: An example from Lake 513 in the Cordillera Blanca, Peru," Nat. Hazards, vol. 71, no. 3, pp. 1617-1638, 2014. https://doi.org/10.1007/s11069-013-0968-4

M. Christen, J. Kowalski, and P. Bartelt, "RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain," Cold Reg. Sci. Technol., vol. 63, no. 1-2, pp. 1-14, 2010. https://doi.org/10.1016/j.coldregions.2010.04.005

F. Frank, B. W. McArdell, C. Huggel, and A. Vieli, "The importance of entrainment and bulking on debris flow runout modeling: Examples from the Swiss Alps," Nat. Hazards Earth Syst. Sci., vol. 15, no. 11, pp. 2569-2583, 2015. https://doi.org/10.5194/nhess-15-2569-2015

J. Gan and Y. X. Zhang, "Numerical simulation of debris flow runout using RAMMs: A case study of Luzhuang gully in China," C. - Comput. Model. Eng. Sci., vol. 121, no. 3, pp. 981-1009, 2019. https://doi.org/10.32604/cmes.2019.07337

F. Zimmermann, B. W. McArdell, C. Rickli, and C. Scheidl, "2D runout modelling of hillslope debris flows, based on well-documented events in Switzerland," Geosci., vol. 10, no. 2, pp. 1-17, 2020. https://doi.org/10.3390/geosciences10020070

Z. Engel, J. Česák, and V. R. Escobar, "Rainfall-related debris flows in Carhuacocha Valley, Cordillera Huayhuash, Peru," Landslides, vol. 8, no. 3, pp. 269-278, 2011. https://doi.org/10.1007/s10346-011-0259-7

H. L. Pan, Y. J. Jiang, J. Wang, and G. Q. Ou, "Rainfall threshold calculation for debris flow early warning in areas with scarcity of data," Nat. Hazards Earth Syst. Sci., vol. 18, no. 5, pp. 1395-1409, 2018. https://doi.org/10.5194/nhess-18-1395-2018

J. Suárez, Deslizamientos. Santander, Colombia: Universidad Industrial de Santander UIS, 2009, vol. 1.

E. Destro, W. Amponsaha, E. I. Nikolopoulos, L. Marchi, F. Marra, D. Zoccatelli, and M. Borga, "Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event," Journal of Hidrology, vol. 558, pp. 225-237, Mar. 2018. https://doi.org/10.1016/j.jhydrol.2018.01.021

B. Bout, L. Lombardo, C. J. van Westen, and V. G. Jetten, "Integration of two-phase solid fluid equations in a catchment model for flashfloods, debris flows and shallow slope failures," Environmental Modelling & Software, vol. 105, pp. 1-16, 2018. https://doi.org/10.1016/j.envsoft.2018.03.017

E. Bladé, L. Cea, G. Corestein, E. Escolano, J. Puertas, E. Vázquez-Cendón, J. Dolz, and A. Coll, "Iber: herramienta de simulación numérica del flujo en ríos," Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, vol. 30, no. 1, pp. 1-10, 2014. https://doi.org/10.1016/j.rimni.2012.07.004

M. A. Somos-Valenzuela, R. E. Chisolm, D. S. Rivas, C. Portocarrero, and D. C. McKinney, "Modeling a glacial lake outburst flood process chain: the case of Lake Palcacocha and Huaraz, Peru," Hydrology and Earth System Sciences, vol. 20, no. 6, pp. 2519-2543, 2016. https://doi.org/10.5194/hess-20-2519-2016

R. Worni, C. Huggel, J. J. Clague, Y. Schaub, and M. Stoffel, "Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective," Geomorphology, vol. 224, pp. 161-176, Nov. 2014. https://doi.org/10.1016/j.geomorph.2014.06.031

M. Álvarez, J. Puertas, E. Peña, and M. Bermúdez, "Two-dimensional dam-break flood analysis in data-scarce regions: The case study of Chipembe dam, Mozambique," Water (Switzerland), vol. 9, no. 6, p. 432, Jun. 2017. https://doi.org/10.3390/w9060432

H. Capart, D. Young, and Y. Zech, Dam-Break Induced Debris Flow, W. McCaffrey, B. Kneller, and J. Peakall, Eds. Wiley, 2009.

C. Rodríguez-Morata, S. Villacorta, M. Stoffel, and J. A. Ballesteros-Cánovas, "Assessing strategies to mitigate debris- flow risk in Abancay province, south-central Peruvian Andes," Geomorphology, vol. 342, pp. 127-139, Oct. 2019. https://doi.org/10.1016/j.geomorph.2019.06.012

M. Mergili, S. P. Pudasaini, A. Emmer, J. T. Fischer, A. Cochachin, and H. Frey, "Reconstruction of the 1941 GLOF process chain at Lake Palcacocha (Cordillera Blanca, Peru)," Hydrology and Earth System Sciences, vol. 24, no. 1, pp. 93-114, 2020. https://doi.org/10.5194/hess-24-93-2020

J. F. Melendez de la Cruz, "Geomorfologia y peligros de la subcuenca del río Auqui (Calcayhuanca), Huaraz, Ancash," Investigaciones Sociales, vol. 12, no. 21, pp. 145-160, 2014. https://doi.org/10.15381/is.v12i21.7193

J. L. Prieto Calderón, R. M.-A. López, J. Taboada-Castro, I. Montequi-Martín, and G. Sanz-Lobón, "Rotura de la presa de Vega de Tera, simulación hidráulica de la propagación de la avenida (Zamora, España)," DYNA, vol. 84, no. 204, pp. 45-54, Dec. 2017. https://doi.org/10.15446/dyna.v84n203.60544

V. Vilímek, M. L. Zapata, and J. Stemberk, "Slope movements in Callejón de Huaylas, Peru," Acta Universitatis Carolinae, Geographica, vol. 35, pp. 39-51, 2000.

M. Ilbay-Yupa, R. Zubieta Barragán, and W. Lavado-Casimiro, "Regionalización de la precipitación, su agresividad y concentración en la cuenca del río Guayas, Ecuador," evista de Ciencias de la Vida, vol. 30, no. 2, pp. 57-76, 2019. https://doi.org/10.17163/lgr.n30.2019.06

P. Duque-Sarango, D. M. Patiño, and X. E. López, "Evaluación del Sistema de Modelamiento Hidrológico HEC-HMS para la Simulación Hidrológica de una Microcuenca Andina Tropical," Información tecnológica, vol. 30, no. 6, pp. 351-362, 2019. https://doi.org/10.4067/S0718-07642019000600351

D. Schneider, C. Huggel, A. Cochachin, S. Guillén, and J. García, "Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru," Advances in Geosciences, vol. 35, pp. 145-155, 2010. https://doi.org/10.5194/adgeo-35-145-2014

Y. Deubelbeiss and C. Graf, "Two different starting conditions in numerical debris flow models-Case study at Dorfbach, Randa (Valais, Switzerland)," in Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft Reunión anual de la Sociedad Suiza de Geomorfología", 2013, pp. 125-138.

H. Il Kim and K. Y. Han, "Linking Hydraulic Modeling with a Machine Learning Approach for Extreme Flood Prediction and Response," Atmosphere (Basel), vol. 11, no. 9, p. 987, 2020. https://doi.org/10.3390/atmos11090987

Published

2021-11-13 — Updated on 2021-05-03

How to Cite

Díaz-Salas, A. M., Guevara-Pérez, E. ., & Vidal-Moren, J. D. (2021). Numerical modeling of a debris flow associated with a dam break in the Quillcay sub basin, Ancash, Peru. Revista Ingeniería UC, 28(1), 35–46. https://doi.org/10.54139/revinguc.v28i1.4

Issue

Section

Artículos