Boron Carbide Composites produced by Self-Propagating High-Temperature Synthesis

Authors

DOI:

https://doi.org/10.54139/revinguc.v28i1.5

Keywords:

composite, boron carbide, self-propagating high-temperature synthesis, thermal dynamic analysis.

Abstract

This work is a study of the conditions for obtaining boron carbide, magnesia, and aluminum oxide composites by self-propagating high temperatures synthesis (SHS). The substances used to synthesize the composites were boron oxide, magnesia, and aluminum oxide. The SHS with the reduction stage was conducted as the following aggregate reaction: 2B2O3+6Mg+xC--->ByCx+6MgO, 2B2O3+4Al+xC=2Al2O3+ByCx. The metallothermic SHS using boron oxide seems

more attractive than the current carbide production methods characterized by long-time and multistage physico-chemical

processes requiring increased material, energy, and financial costs. The thermodynamic calculations of the phase composition of the products and the adiabatic combustion temperature for systems B2O3–Mg– C, B2O3–Al–C were made in the FastStage program. The calculations and tests allowed identifying the optimal conditions of SHS. The products of SHS were examined by X-ray phase analysis and the SEM method. The compositions of the B2O3–Mg–C system obtained by SHS were represented mainly by boron carbide, magnesia, magnesium borate, and Mg3B2O6. The products of the B2O3–Al–C system obtained by SHS contained boron carbide, alumina, and aluminum boride.

Downloads

Download data is not yet available.

References

P. S. Kislyi and M. A. Kuznetsova, Boron carbide. Kyiv: Naukova Dumka, 1988.

R. A. Andrievskii, "Synthesis, Structure, and Properties of Microsize and Nanosize Boron Carbide [Mikro- i nanorazmernyy karbid bora: sintez, struktura i svoystva]," Russian Chemical Reviews (Uspekhi Khimii), vol. 81, no. 6, pp. 549-559, 2012. https://doi.org/10.1070/RC2012v081n06ABEH004287

N. S. Hosmane, Boron Science: New Technologies and Applications. Boca Raton (Florida, US): CRC Press (Taylor and Francis Group), 2012.

D. Radev and E. Ampaw, "Classical and contemporary synthesis methods of boron carbide powders," Comptes rendus de l'Académie bulgare des sciences: sciences mathématiques et naturelles, vol. 68, no. 8, pp. 945-956, 201

G. Goller, C. Toy, A. Tekin, and C. K. Gupta, "The production of boron carbide by carbothermic reduction," High Temperature Materials and Process, vol. 15, no. 1-2, pp. 117-122, 1996. https://doi.org/10.1515/HTMP.1996.15.1-2.117

F. Thevenot, "Boron carbide-a comprehensive review," Journal of the European Ceramic Society, vol. 6, no. 4, pp. 205-225, 1990. https://doi.org/10.1016/0955-2219(90)90048-K

D. A. Ovsyannikov, M. Y. Popov, S. A. Perfilov, V. M. Prokhorov, B. A. Kul'nitskiy, I. A. Perezhogin, and V. D. Blank, "Highly Rigid Ceramics Based on Borob Carbide and Fullerite Products [Vysokotverdaya keramika na osnove karbida bora i proizvodnykh fullerita]," Semiconductors/Physics of the Solid State, vol. 59, no. 2, pp. 318-321, 2017. https://doi.org/10.1134/S1063783417020214

A. G. Merzhanov and I. P. Borovinskaya, "Historical Retrospective of SHS: An Autoreview," International Journal of Self-Propagating High-Temperature Synthesis, vol. 17, no. 4, pp. 242-265, 2008. https://doi.org/10.3103/S1061386208040079

R. G. Abdulkarimova, A. J. Seidualiyeva, and K. Kamunur, "Synthesis of Composite Materials Based on Borides of Metals and Aluminum Oxide under the Combustion Conditions," Journal of Materials Science and Engineering B, vol. 8, no. 3-4, pp. 56-65, 2018. https://doi.org/10.17265/2161-6221/2018.3-4.003

E. A. Levashov, A. S. Rogachev, V. V. Kurbatkina, Y. M. Maximov, and V. I. Yukhvid, Promising materials and technologies of self-propagating high temperature synthesis [Perspektivnyye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza]. Moscow: NUST MISIS, 2011.

A. G. Merzhanov and A. S. Mukasyan, Solid Flame Combustion [Tverdoplamennoye goreniye]. Moscow: Torus Press, 2007.

J. H. Lee, W. Won, S. M. Joo, D. Y. Maeng, and H. Kim, "Preparation of B4C powder from B2O3 oxide by SHS process," Journal of Materials Science Letters, vol. 19, no. 11, pp. 951-954, 2000. https://doi.org/10.1023/A:1006760020130

V. A. Shcherbakov, A. N. Gryadunov, M. I. Alymov, and N. V. Sachkova, "Combustion synthesis and consolidation B4C - TiB2 composites [SVS-kompaktirovaniye kompozita B4C - TiB2]," Letters on materials, vol. 6, no. 3, pp. 217-220, 2016. https://doi.org/10.22226/2410-3535-2016-3-217-220

Z. A. Mansurov, S. M. Fomenko, A. N. Alipbaev, R. G. Abdulkarimova, and V. E. Zarko, "Aluminothermic Combustion of Chromium Oxide Based Systems under High Nitrogen Pressure," Combustion Explosion, and Shock Waves, vol. 52, no. 2, pp. 184-192, 2016. https://doi.org/10.1134/S0010508216020088

I. H. Jung and M. A. Van Ende, "Computational Thermodynamic Calculations: FactSage from CALPHAD Thermodynamic Database to Virtual Process Simulation," Metallurgical and Materials Transactions B, vol. 51, no. 5, pp. 1851-1874, 2020. https://doi.org/10.1007/s11663-020-01908-7

S. Mishra and L. C. Pathak, "Self-Propagating High-Temperature Synthesis (SHS) of Advanced High-Temperature Ceramics," Key Engineering Materials, vol. 395, pp. 15-38, 2008. https://doi.org/10.4028/www.scientific.net/KEM.395.15

M. A. Korchagin, T. F. Grigorieva, B. B. Bohonov, A. P. Sharafutdinov, B. B. Barinova, and N. Z. Lyakhov, "Solid- State Combustion in Mechanically Activated SHS Systems. II. Effect of Mechanical Activation Conditions on Process Parameters and Combustion Product Composition," Combustion, Explosion, and Shock Waves, vol. 39, no. 1, pp. 51-58, 2003. https://doi.org/10.1023/A:1022197218749

M. A. Korchagin and D. V. Dudin, "The use of self-propagating high temperature synthesis and mechanical activation for production of nanocomposites [Ispol'zovaniye samorasprostranyayushchegosya vysokotemperaturnogo sinteza i mekhanicheskoy aktivatsii dlya polucheniya nanokompozitov]," Combustion, Explosion, and Shock Waves, vol. 43, no. 2, pp. 176-187, 2007. https://doi.org/10.1007/s10573-007-0024-3

S. Tolendiuly, S. M. Fomenko, R. G. Abdulkarimova, and A. Akishev, "Synthesis and superconducting properties of the MgB2@BaO composites," Inorganic and Nano-Metal Chemistry, vol. 50, no. 5, pp. 349-353, 2020. https://doi.org/10.1080/24701556.2019.1711400

S. Tolendiuly, S. M. Fomenko, Z. A. Mansurov, G. Dannangoda, and K. S. Martirosyan, "Self-propagating high temperature synthesis of MgB2 superconductor in high-pressure of argon condition," Eurasian Chemico-Technological Journal, vol. 19, no. 2, pp. 177-181, 2017. https://doi.org/10.18321/ectj649

F. Bernard and E. Gaffet, "Mechanical alloying in the SHS research," International Journal of Self-Propagating High- Temperature Synthesis, vol. 10, no. 2, pp. 109-132, 2001.

Z. V. Eremeeva, S. Vorotilo, V. S. Panov, L. V. Myakisheva, A. I. Lizunov, A. A. Nepapushev, D. A. Sidorenko, and D. Y. Mishunin, "Structure and Properties of Boron Carbide Produced by SHS and Mechanochemical Synthesis: a Comparative Study," in Fifteenth International Symposium on Self-Propagating High-Temperature Synthesis, Moscow, Russia, 2019, pp. 96-98.

N. N.P., B. I.P., and M. A.G., Combustion Processes in Chemical Technology and Metallurgy [Protsessy goreniya v khimicheskoy tekhnologii i metallurgii]. Joint Institute of Chemical Physics [Russian], 1975, ch. Thermal Dynamic Analysis of SHS Reactions [Termodinamicheskiy analiz reaktsiy SVS].

D. S. Raimkhanova, S. M. Fomenko, R. G. Abdulkarimova, and Z. A. Mansurov, "Effect of Argon Pressure and Aluminum Content (in TiO2 - H3BO3 - Al Mix) on Combustion and Formation of Chemical Composition in Combustion Products," Advanced Materials Research, vol. 746, pp. 62-67, 2013. https://doi.org/10.4028/www.scientific.net/AMR.746.62

Z. A. Mansurov, D. S. Abdulkarimova, O. Odawara, A. V. Gubarevich, A. S. Rogachev, N. Shkodich, and N. N. Kochetov, "Peculiarities of Self-Propagating High-Temperature Synthesis and Structure Formation of TiB2 - Al2O3 and CrB2 - Al2O3 Composites," Eurasian Chemico-Technological Journal, vol. 13, no. 3-4, pp. 161-168, 2011. https://doi.org/10.18321/ectj.80

Downloads

Published

2021-05-03

How to Cite

Abdulkarimova , R. G., Seidualiyeva , A. J., Batkal, A. N., Tolendiuly , S. ., & Fomenko , S. M. . (2021). Boron Carbide Composites produced by Self-Propagating High-Temperature Synthesis. Revista Ingeniería UC, 28(1), 111–120. https://doi.org/10.54139/revinguc.v28i1.5

Issue

Section

Artículos