SARS-CoV-2: una revisión rápida de algunas de las opciones de tratamiento disponibles.

Autores/as

  • Mariajosé Rodríguez-Núñez Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas-Venezuela https://orcid.org/0000-0002-8898-0546
  • Mariangel Delgado Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas-Venezuela https://orcid.org/0000-0002-8089-5873
  • Héctor R Rangel Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas-Venezuela https://orcid.org/0000-0001-5937-9690

DOI:

https://doi.org/10.54139/salus.v25i3.131

Palabras clave:

SARS-CoV-2, COVID-19, antivirales, coronavirus

Resumen

Introducción: Con más de 244 millones de casos en todo el mundo, la pandemia de SARS-CoV-2 ha afectado a casi todos los países del planeta. El impacto en los sistemas salud, economía, educación y científicos, entre otros, ha sido significativo. La búsqueda de herramientas terapéuticas para el tratamiento y control de la nueva enfermedad, COVID-19, ha sido intensa, pero aún no ha sido posible seleccionar un fármaco específico y eficaz para el tratamiento de la misma. Metodología: el objetivo es resumir la información existente, referente a algunos de los fármacos más comunes usados en terapia contra el COVID-19, para lograrlo se usó una metodología de búsqueda en bases de datos científicas y generales (Pubmed, Google Scholar) usando palabras claves relacionadas con el tema de interés. Los resultados muestran que las drogas más comunes usadas en el tratamiento de esta enfermedad han sido evaluadas en su mayoría en ensayos clínicos. Conclusiones: a pesar de haber transcurrido casi dos años desde el primer caso de COVID-19 no se han desarrollado o reasignado fármacos efectivos y específicos para el tratamiento de la enfermedad y algunos de los que ha sido evaluados han mostrado resultados controversiales.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Chan KS, Zheng JP, Mok YW, Li YM, Liu YN, Chu CM, Ip MS. SARS: prognosis, outcome and sequelae. Respirology. 2003;8 Suppl(Suppl 1):S36-S40. https://doi.org/10.1046/j.1440-1843.2003.00522.x.

Mahoney M, Damalanka VC, Tartell MA, Chung DH, Lourenço AL, Pwee D, et al. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proc Natl Acad Sci U S A. 2021;118(43):e2108728118. https://doi.org/10.1073/pnas.2108728118.

Haixia S, Yechun X, Hualiang J. Drug discovery and development targeting the life cycle of SARS-CoV-2, Fundamental Research. 2021; 1(2):151-165 https://doi.org/10.1016/j.fmre.2021.01.013.

Ortega JT, Zambrano JL, Jastrzebska B, Liprandi F, Rangel HR, Pujol FH. Understanding severe acute respiratory syndrome coronavirus 2 replication to design efficient drug combination therapies. Intervirology. 2020;63(1-6):2-9. https://doi.org/10.1159/000512141.

Frisk-Holmberg M, Bergqvist Y, Englund U. Chloroquine intoxication. Br J Clin Pharmacol. 1983;15(4):502-503. https://doi.org/10.1111/j.1365-2125.1983.tb01540.x.

Inglot AD. Comparison of the antiviral activity in vitro of some non-steroidal anti-inflammatory drugs. J Gen Virol. 1969;4(2):203-14. https://doi.org/10.1099/0022-1317-4-2-203.

Miller DK, Lenard J. Antihistaminics, local anesthetics, and other amines as antiviral agents. Proc Natl Acad Sci U S A. 1981;78(6):3605-3609. https://doi.org/10.1073/pnas.78.6.3605.

Keyaerts E., Vijgen L., Maes P., Neyts J., Ranst M.V. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun. 2004;323:264- 268. https://doi.org/10.1016/j.bbrc.2004.08.085.

Keyaerts E., Li S., Vijgen L., Rysman E., Verbeeck J., Van Ranst M. et al. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob. Agents Chemother. 2009;53:3416-3421. https://doi.org/10.1128/AAC.01509-08.

Tricou V, Minh NN, Van TP, Lee SJ, Farrar J, Wills B, et al. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Neglected Trop. Dis. 2010;4:e785. https://doi.org/10.1371/journal.pntd.0000785.

Maheshwari R.K., Srikantan V., Bhartiya D. Chloroquine enhances replication of Semliki Forest virus and encephalomyocarditis virus in mice. J. Virol. 1991; 65:992-995 https://doi.org/10.1128/jvi.65.2.992-995.1991.

Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72-73 https://doi.org/10.5582/bst.2020.01047.

Megarbane B. Chloroquine and hydroxychloroquine to treat COVID-19: between hope and caution. Clin Toxicol (Phila). 2021;59(1):70-71. https://doi.org/10.1080/15563650.2020.1748194.

Carafoli E. Chloroquine and hydroxychloroquine in the prophylaxis and therapy of COVID-19 infection. Biochem Biophys Res Commun. 2021; 538:156-162. https://doi.org/10.1016/j.bbrc.2020.09.128.

Chen F, Chan KH, Jiang Y, Kao RY, Lu HT, Fan KW et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 2004;31(1):69-75. https://doi.org/10.1016/j.jcv.2004.03.003.

Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252-256. https://doi.org/10.1136/thorax.2003.012658.

Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787-1799. https://doi.org/10.1056/NEJMc2008043.

Wehbe Z, Wehbe M, Iratni R, Pintus G, Zaraket H, Yassine HM, et al. Repurposing ivermectin for COVID-19: Molecular aspects and therapeutic possibilities. Front Immunol. 2021;12:663586. https://doi.org/10.3389/fimmu.2021.663586.

Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J 2012; 443(3):851-856. https://doi.org/10.1042/BJ20120150.

Gupta PSS, Biswal S, Panda SK, Ray AK, Rana MK. Binding mechanism and structural insights into the identified protein target of COVID-19 and importin-α with in-vitro effective drug ivermectin. J Biomol Struct Dyn 2020; 1-10. https://doi.org/10.1080/07391102.2020.1839564

Ahmed S, Karim MM, Ross AG, Hossain MS, Clemens JD, Sumiya MK, et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int J Infect Dis 2020;103:214-216. https://doi.org/10.1016/j.ijid.2020.11.191.

Rajter JC, Sherman MS, Fatteh N, Vogel F, Sacks J, Rajter JJ. Use of ivermectin is associated with lower mortality in hospitalized patients with coronavirus disease 2019: The ivermectin in COVID nineteen study. Chest 2021;159(1):85-92. https://doi.org/10.1016/j.chest.2020.10.009.

Rommasi F, Nasiri MJ, Mirsaiedi M. Antiviral drugs proposed for COVID-19: action mechanism and pharmacological data. Eur Rev Med Pharmacol Sci. 2021;25(11):4163-4173. https://doi.org/10.26355/eurrev_202106_26060

Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. ACTT-1 Study group members. Remdesivir for the treatment of Covid-19 - Final Report. N Engl J Med. 2020;383(19):1813-1826. https://doi.org/10.1056/NEJMoa2007764.

WHO Solidarity Trial Consortium Repurposed antiviral drugs for Covid-19-interim WHO solidarity trial results. N. Engl. J. Med. 2021;384, 497-511. https://doi.org/10.1056/NEJMoa2023184.

Agrawal U, Raju R, Udwadia ZF. Favipiravir: a new and emerging antiviral option in COVID-19. Med J Armed Forces India 2020; 76: 370-376. https://doi.org/10.1016/j.mjafi.2020.08.004.

Mishra SK, Tripathi T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop. 2021;214:105778. https://doi.org/10.1016/j.actatropica.2020.105778.

Udwadia ZF, Singh P, Barkate H, Patil S, Rangwala S, Pendse A, et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J Infect Dis. 2021;103:62-71. https://doi.org/10.1016/j.ijid.2020.11.142.

Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol. 2021;28(9):740-746. https://doi.org/10.1038/s41594-021-00651-0.

Crotty S, Cameron C, Andino R. Ribavirin's antiviral mechanism of action: lethal mutagenesis? J. Mol. Med. 2002;80(2):86-95. https://doi.org/10.1007/s00109-001-0308-0

Thomas E., Ghany M.G., Liang T.J. Chemotherapy, The application and mechanism of action of ribavirin in therapy of hepatitis C. J. Antiviral Chem. 2012;23(1):1-12 https://doi.org/10.3851/IMP2125

Hung IF, Lung KC, Tso EY, Liu R, Chung TW, Chu MY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, ramdomised, phase 2 trial. Lancet. 2020;395(10238):1695-1704. doi: 10.1016/S01406736(20)31042-4.

Descargas

Publicado

16-02-2022

Cómo citar

Rodríguez-Núñez, M., Delgado, M., & Rangel, H. R. (2022). SARS-CoV-2: una revisión rápida de algunas de las opciones de tratamiento disponibles. Salus, 25(3), 39–43. https://doi.org/10.54139/salus.v25i3.131

Número

Sección

Revisión Bibliográfica