SARS-CoV-2: a quick review of some of the available treatment options.

Authors

  • Mariajosé Rodríguez-Núñez Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas-Venezuela https://orcid.org/0000-0002-8898-0546
  • Mariangel Delgado Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas-Venezuela https://orcid.org/0000-0002-8089-5873
  • Héctor R Rangel Laboratorio de Virología Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Caracas-Venezuela https://orcid.org/0000-0001-5937-9690

DOI:

https://doi.org/10.54139/salus.v25i3.131

Keywords:

SARS-CoV-2, COVID-19, antivirals, coronavirus

Abstract

Background: With more than 244 million cases worldwide, the SARSCoV-2 pandemic has affected almost every country on the planet. Its impact on the health, economy, education and scientific systems, among others, has been significant. The search for therapeutic tools for the treatment and control of this new disease, COVID-19, has been intense, but it has not yet been possible to select a specific and effective drug for its treatment. Methodology: the objective of this work is to summarize the existing information, related to some of the most common drugs used in therapy against COVID-19, to achieve this a search methodology was used in scientific and general databases (Pubmed, Google Scholar) using keywords related to the topic of interest. The results show that the most common drugs used in the treatment of this disease have mostly been evaluated in clinical trials. Conclusions: despite almost two years passed since the first case of COVID-19, effective and specific drugs have not been developed or reassigned for the treatment of the disease and some of of the already evaluated have shown controversial results.

Downloads

Download data is not yet available.

References

Chan KS, Zheng JP, Mok YW, Li YM, Liu YN, Chu CM, Ip MS. SARS: prognosis, outcome and sequelae. Respirology. 2003;8 Suppl(Suppl 1):S36-S40. https://doi.org/10.1046/j.1440-1843.2003.00522.x.

Mahoney M, Damalanka VC, Tartell MA, Chung DH, Lourenço AL, Pwee D, et al. A novel class of TMPRSS2 inhibitors potently block SARS-CoV-2 and MERS-CoV viral entry and protect human epithelial lung cells. Proc Natl Acad Sci U S A. 2021;118(43):e2108728118. https://doi.org/10.1073/pnas.2108728118.

Haixia S, Yechun X, Hualiang J. Drug discovery and development targeting the life cycle of SARS-CoV-2, Fundamental Research. 2021; 1(2):151-165 https://doi.org/10.1016/j.fmre.2021.01.013.

Ortega JT, Zambrano JL, Jastrzebska B, Liprandi F, Rangel HR, Pujol FH. Understanding severe acute respiratory syndrome coronavirus 2 replication to design efficient drug combination therapies. Intervirology. 2020;63(1-6):2-9. https://doi.org/10.1159/000512141.

Frisk-Holmberg M, Bergqvist Y, Englund U. Chloroquine intoxication. Br J Clin Pharmacol. 1983;15(4):502-503. https://doi.org/10.1111/j.1365-2125.1983.tb01540.x.

Inglot AD. Comparison of the antiviral activity in vitro of some non-steroidal anti-inflammatory drugs. J Gen Virol. 1969;4(2):203-14. https://doi.org/10.1099/0022-1317-4-2-203.

Miller DK, Lenard J. Antihistaminics, local anesthetics, and other amines as antiviral agents. Proc Natl Acad Sci U S A. 1981;78(6):3605-3609. https://doi.org/10.1073/pnas.78.6.3605.

Keyaerts E., Vijgen L., Maes P., Neyts J., Ranst M.V. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun. 2004;323:264- 268. https://doi.org/10.1016/j.bbrc.2004.08.085.

Keyaerts E., Li S., Vijgen L., Rysman E., Verbeeck J., Van Ranst M. et al. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob. Agents Chemother. 2009;53:3416-3421. https://doi.org/10.1128/AAC.01509-08.

Tricou V, Minh NN, Van TP, Lee SJ, Farrar J, Wills B, et al. A randomized controlled trial of chloroquine for the treatment of dengue in Vietnamese adults. PLoS Neglected Trop. Dis. 2010;4:e785. https://doi.org/10.1371/journal.pntd.0000785.

Maheshwari R.K., Srikantan V., Bhartiya D. Chloroquine enhances replication of Semliki Forest virus and encephalomyocarditis virus in mice. J. Virol. 1991; 65:992-995 https://doi.org/10.1128/jvi.65.2.992-995.1991.

Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72-73 https://doi.org/10.5582/bst.2020.01047.

Megarbane B. Chloroquine and hydroxychloroquine to treat COVID-19: between hope and caution. Clin Toxicol (Phila). 2021;59(1):70-71. https://doi.org/10.1080/15563650.2020.1748194.

Carafoli E. Chloroquine and hydroxychloroquine in the prophylaxis and therapy of COVID-19 infection. Biochem Biophys Res Commun. 2021; 538:156-162. https://doi.org/10.1016/j.bbrc.2020.09.128.

Chen F, Chan KH, Jiang Y, Kao RY, Lu HT, Fan KW et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 2004;31(1):69-75. https://doi.org/10.1016/j.jcv.2004.03.003.

Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252-256. https://doi.org/10.1136/thorax.2003.012658.

Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020;382(19):1787-1799. https://doi.org/10.1056/NEJMc2008043.

Wehbe Z, Wehbe M, Iratni R, Pintus G, Zaraket H, Yassine HM, et al. Repurposing ivermectin for COVID-19: Molecular aspects and therapeutic possibilities. Front Immunol. 2021;12:663586. https://doi.org/10.3389/fimmu.2021.663586.

Wagstaff KM, Sivakumaran H, Heaton SM, Harrich D, Jans DA. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J 2012; 443(3):851-856. https://doi.org/10.1042/BJ20120150.

Gupta PSS, Biswal S, Panda SK, Ray AK, Rana MK. Binding mechanism and structural insights into the identified protein target of COVID-19 and importin-α with in-vitro effective drug ivermectin. J Biomol Struct Dyn 2020; 1-10. https://doi.org/10.1080/07391102.2020.1839564

Ahmed S, Karim MM, Ross AG, Hossain MS, Clemens JD, Sumiya MK, et al. A five-day course of ivermectin for the treatment of COVID-19 may reduce the duration of illness. Int J Infect Dis 2020;103:214-216. https://doi.org/10.1016/j.ijid.2020.11.191.

Rajter JC, Sherman MS, Fatteh N, Vogel F, Sacks J, Rajter JJ. Use of ivermectin is associated with lower mortality in hospitalized patients with coronavirus disease 2019: The ivermectin in COVID nineteen study. Chest 2021;159(1):85-92. https://doi.org/10.1016/j.chest.2020.10.009.

Rommasi F, Nasiri MJ, Mirsaiedi M. Antiviral drugs proposed for COVID-19: action mechanism and pharmacological data. Eur Rev Med Pharmacol Sci. 2021;25(11):4163-4173. https://doi.org/10.26355/eurrev_202106_26060

Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. ACTT-1 Study group members. Remdesivir for the treatment of Covid-19 - Final Report. N Engl J Med. 2020;383(19):1813-1826. https://doi.org/10.1056/NEJMoa2007764.

WHO Solidarity Trial Consortium Repurposed antiviral drugs for Covid-19-interim WHO solidarity trial results. N. Engl. J. Med. 2021;384, 497-511. https://doi.org/10.1056/NEJMoa2023184.

Agrawal U, Raju R, Udwadia ZF. Favipiravir: a new and emerging antiviral option in COVID-19. Med J Armed Forces India 2020; 76: 370-376. https://doi.org/10.1016/j.mjafi.2020.08.004.

Mishra SK, Tripathi T. One year update on the COVID-19 pandemic: Where are we now? Acta Trop. 2021;214:105778. https://doi.org/10.1016/j.actatropica.2020.105778.

Udwadia ZF, Singh P, Barkate H, Patil S, Rangwala S, Pendse A, et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J Infect Dis. 2021;103:62-71. https://doi.org/10.1016/j.ijid.2020.11.142.

Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol. 2021;28(9):740-746. https://doi.org/10.1038/s41594-021-00651-0.

Crotty S, Cameron C, Andino R. Ribavirin's antiviral mechanism of action: lethal mutagenesis? J. Mol. Med. 2002;80(2):86-95. https://doi.org/10.1007/s00109-001-0308-0

Thomas E., Ghany M.G., Liang T.J. Chemotherapy, The application and mechanism of action of ribavirin in therapy of hepatitis C. J. Antiviral Chem. 2012;23(1):1-12 https://doi.org/10.3851/IMP2125

Hung IF, Lung KC, Tso EY, Liu R, Chung TW, Chu MY, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, ramdomised, phase 2 trial. Lancet. 2020;395(10238):1695-1704. doi: 10.1016/S01406736(20)31042-4.

Published

2022-02-16

How to Cite

Rodríguez-Núñez, M., Delgado, M., & Rangel, H. R. (2022). SARS-CoV-2: a quick review of some of the available treatment options. Salus, 25(3), 39–43. https://doi.org/10.54139/salus.v25i3.131