Covid-19: from epidemiology and immunology to the clinic.

Authors

  • Velmar Alberto Quintero Cátedra de Semiología. Departamento Clínico Integral del Norte. Escuela de Medicina. Valencia. Facultad de Ciencias de la Salud de la Universidad de Carabobo. Valencia, Venezuela https://orcid.org/0000-0003-1350-7751

DOI:

https://doi.org/10.54139/salus.v25i3.128

Keywords:

COVID-19, epidemiology,, innate immune response, adaptive immune response, clinical manifestations

Abstract

Background: The acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) that causes the coronavirus disease 2019, appears in the world with a high rate of spread, becoming a global public health problem, being declared a pandemic by the WHO on March 11, 2020. SARS-CoV-2 enters the cell by binding with the angiotensin-converting enzyme II (ACE2) causing direct cytopathic damage in pneumocytes, cardiocytes and podocytes, as well as in endothelial cells. However, it is both the innate and adaptive immune response (IR), activated by the same virus, which becomes a mechanism of tissue damage, being evaded or persisting in an excessive way. The target organ par excellence of SARS-CoV-2 is the lung, other organs are compromised especially cardiac, renal and gastrointestinal, the objective of the review is to document the relationship between epidemiology and immunology with the clinical expression of the disease. Methodology: A research of epidemiology, immunological response and clinic of COVID-19 was carried out, until February 2021, selecting those with the greatest interest, of the 188 articles reviewed, 40 articles considered by the author as relevant were included. Conclusions: Excessive and unregulated IR produces many of the clinical manifestations of covid-19, cytokine storm, hyperinflammation and the state of hypercoagubility, are related to severe disease, complications and sequelae.

Downloads

Download data is not yet available.

References

Cortés ME. La pandemia de COVID-19: Importancia de estar alerta ante las Zoonosis. Rev Fac Med Hum 2021; 21(1): 137-141. https://doi.org/10.25176/RFMH.v21i1.3451

Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020 May;109:102433. https://doi.org/10.1016/j.jaut.2020.102433.

Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU).Disponible en: https://coronavirus.jhu.edu/

Orsucci D, Ienco EC, Nocita G, Napolitano A, Vista M. Neurological features of COVID-19 and their treatment: a review. Drugs Context. 2020 Jun 11;9:2020-5-1. https://doi.org/10.7573/dic.2020-5-1.

García-Azorín D, Sierra Á, Trigo J, Alberdi A, Blanco M, Calcerrada I, et al. Frequency and phenotype of headache in covid-19: a study of 2194 patients. Sci Rep. 2021 Jul 19;11(1):14674. https://doi.org/10.1038/s41598-021-94220-6.

Belvis R. Headaches during COVID-19: my clinical case and review of the literature. Headache. 2020 Jul;60(7):1422-1426. https://doi.org/10.1111/head.13841.

Mao L, Jin H, Wang M, Hu Y, Chen S, He Q et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683-690 https://doi.org/10.1001/jamaneurol.2020.1127.

Gottlieb M, Long B. Dermatologic manifestations and complications of COVID-19. Am J Emerg Med. 2020; 38(9):1715-1721. https://doi.org/10.1016/j.ajem.2020.06.011.

Goha A, Mezue K, Edwards P, Nunura F, Baugh D, Madu E. COVID-19 and the heart: An update for clinicians. Clin Cardiol. 2020 Nov;43(11):1216-1222. https://doi.org/10.1002/clc.23406.

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052.

Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and Multiorgan Response. Curr Probl Cardiol. 2020 Aug;45(8):100618. https://doi.org/10.1016/j.cpcardiol.2020.100618.

Kopel J, Perisetti A, Gajendran M, Boregowda U, Goyal H. Clinical insights into the gastrointestinal manifestations of COVID-19. Digestive Dis Sci. (2020) 65:1932-1939. https://doi.org/10.1007/s10620-020-06362-8.

Zhang JJ, Dong X, Cao YY, Yuan YD, Yang YB, Yan YQ, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. (2020) 75:1730-1741. https://doi.org/10.1111/all.14238.

Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020 May; 158(6): 1831-1833.e3 https://doi.org/10.1053/j.gastro.2020.02.055.

Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q, Wu J. Coronavirus infections and immune responses. J Med Virol. 2020 Apr;92(4):424-432. https://doi.org/10.1002/jmv.25685.

Sheahan T, Morrison TE, Funkhouser W, Uematsu S, Akira S, Baric RS, Heise MT. MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathog. 2008 Dec;4(12):e1000240. https://doi.org/10.1371/journal.ppat.1000240.

Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020 May 1;130(5):2620-2629. https://doi.org/10.1172/JCI137244. PMID: 32217835; PMCID: PMC7190990.

Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020 Jun;8(6):e46-e47. https://doi.org/10.1016/S2213-2600(20)30216-2.

Agra L, Madruga D, De Almeida E, Galvao De Franca J, Marreiro J, et al. Neutrophils and COVID-19: The road so far. International Immunopharmacology 90 (2021) 107233. https://doi.org/10.1016/j.intimp.2020.107233

Ye W, Chen G, Li X, Lan X, Ji C, Hou M, et al. Dynamic changes of D-dimer and neutrophil-lymphocyte count ratio as prognostic biomarkers in Covid-19. Respir. Res. 2020, jul 3; 21 (1), 169. https://doi.org/10.1186/s12931-020-01428-7

Y Liu Y, Du X, Chen J, Jin Y, Peng L, Wang H.H.X, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19, J. Infect. 81 (2020) e6-e12. https://doi.org/10.1016/j.jinf.2020.04.002

Yang A.P, Liu J, Tao W.Q, Li H.M. The diagnostic and predictive role of NLR, d-NLR and PLR in COVID-19 patients, Int. Immunopharmacol. 84 (2020). https://doi.org/10.1016/j.intimp.2020.106504

Ricci D, Etna M, Rizzo F, Sandini S, Severa M, Coccia E. Innate Immune Response to SARS-CoV-2 Infection: From Cells to Soluble Mediators. Int. J. Mol. Sci. 2021, 22, 7017. https://doi.org/10.3390/ijms22137017

Jung CY, Park H, Kim DW, Choi YJ, Kim SW, Chang TI. Clinical Characteristics of Asymptomatic Patients with COVID-19: A Nationwide Cohort Study in South Korea. Int J Infect Dis. 2020 Oct;99:266-268. https://doi.org/10.1016/j.ijid.2020.08.001.

Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-1069. https://doi.org/10.1001/jama.2020.1585.

Carvelli J, Demaria O, Vély F, Batista L, Benmansour NC, Fares J, et al. Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis. Nature. 2020 Dec;588(7836):146-150. https://doi.org/10.1136/jitc-2020-SITC2020.0483.

Woodruff TM, Shukla AK. The Complement C5a-C5aR1GPCR Axis in COVID-19 Therapeutics. Trends Immunol. 2020 Nov;41(11):965-967. https://doi.org/10.1016/j.it.2020.09.008.

Brunetta E, Folci M, Bottazzi B, De Santis M, Gritti G, Protti A, Mapelli SN, Bonovas S, Piovani D, Leone R, et al. Macrophageexpression and prognostic significance of the long pentraxin PTX3 in COVID-19. Nat Immunol. 2021 Jan;22(1):19-24. https://doi.org/10.1038/s41590-020-00832-x.

Liu H, Hu T, Zhang C, Chen X, Zhang S, Li M, et al. Mechanisms ofCOVID-19. Thrombosis in an inflammatory environment and newanticoagulant targets, Am J Transl Res 2021; 13(5):3925-3941.

Middleton EA, He X, Denorme F, Campbell RA, Ng D, Salvatore SP,et al. Neutrophil extracellular traps contribute to immunothrombosisin COVID-19 acute respiratory distress syndrome. Blood 2020 Sep 3;136(10):1169-1179. https://doi.org/10.1182/blood.2020007008.

Lai CC, Liu Y, Wang CY, Wang YH, Hsueh SC, Yen M-Y, et al. Asymptomatic carrier state, acute respiratory disease, andpneumonia due to severe acute respiratory syndrome coronavirus2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol Infect. 2020 Jun;53(3):404-412. https://doi.org/10.1016/j.jmii.2020.02.012.

Grifoni A, Weiskopf D, Ramírez S, Mateus J, Dan J, ModerbacherC, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirusin Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020 Jun 25;181(7):1489-1501.e15. https://doi.org/10.1016/j.cell.2020.05.015.

García-Salido A. Revisión narrativa sobre la respuesta inmunitariafrente a coronavirus: descripción general, aplicabilidad paraSARS-COV-2 e implicaciones terapéuticas. An Pediatr (Engl Ed). 2020 Jul;93(1):60.e1-60.e7. Spanish. https://doi.org/10.1016/j.anpedi.2020.04.016.

Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 andCOVID-19. Cell. 2021 Feb 18;184(4):861-880. https://doi.org/10.1016/j.cell.2021.01.007.

Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, Tian DS. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020 Jul 28;71(15):762-768. https://doi.org/10.1093/cid/ciaa248.

Siripanthong B, Nazarian S, Muser D, et al. Recognizing COVID-19- related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020, Sep; 17(9):1463-1471. https://doi.org/10.1016/j.hrthm.2020.05.001

Kantarcioglu B, Iqbal O, Walenga JM, Lewis B, Lewis J, Carter CA, Singh M, Lievano F, Tafur A, Ramacciotti E, Gerotziafas GT, Jeske W, Fareed J. An Update on the Pathogenesis of COVID-19 and the Reportedly Rare Thrombotic Events Following Vaccination. Clin Appl Thromb Hemost. 2021 Jan-Dec;27:10760296211021498. https://doi.org/10.1177/10760296211021498.

Rodríguez L, Núñez V. Fisiopatología y Manifestaciones Clínica SARS COVID (COVID-19). Artículos Origínales, 2020,30:8-15.

Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, et al. Characteristics of Peripheral Lymphocyte Subset Alteration in COVID-19 Pneumonia. J Infect Dis 2020 May 11; 221(11):17621769. https://doi.org/10.1093/infdis/jiaa150.

Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese. JAMA. 2020; 323(13):1239-1242. https://doi.org/10.1001/jama.2020.2648.

Huang A, Garcia-Carreras B, Hitchings M, Yang B, Katzelnick L, Rattigan S, et al. A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nature Communications, 2020, 11:4704. https://doi.org/10.1038/s41467-020-18450-4.

Published

2022-02-16

How to Cite

Quintero, V. A. (2022). Covid-19: from epidemiology and immunology to the clinic. Salus, 25(3), 19–24. https://doi.org/10.54139/salus.v25i3.128