Host genetic factors involved in the susceptibility and severity of COVID-19.

Authors

  • Esmeralda Vizzi 1 Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC). Carretera Panamericana Km 11, Caracas 1020-A, Edo. Miranda, Venezuela. https://orcid.org/0000-0001-6865-1617
  • Viviana Ramírez Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC). Carretera Panamericana Km 11, Caracas 1020-A, Edo. Miranda, Venezuela. https://orcid.org/0000-0001-6179-8130
  • Rita E. Rosales Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC). Carretera Panamericana Km 11, Caracas 1020-A, Edo. Miranda, Venezuela. https://orcid.org/0000-0002-8436-042X
  • José Luis Zambrano 1 Laboratorio de Biología de Virus, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas (IVIC). Carretera Panamericana Km 11, Caracas 1020-A, Edo. Miranda, Venezuela. https://orcid.org/0000-0001-9884-2940
  • Mercedes Fernández-Mestre Laboratorio de Fisiopatología, Sección Inmunogenética. Centro de Medicina Experimental Miguel Layrisse, Instituto Venezolano de Investigaciones Científicas (IVIC). Caracas 1020-A, Edo. Miranda, Venezuela. https://orcid.org/0000-0001-6227-5884

DOI:

https://doi.org/10.54139/salus.v25i3.130

Keywords:

SARS-CoV-2, COVID-19, genetic susceptibility, disease severity

Abstract

Background: SARS-CoV-2 infection ranges from asymptomatic forms to very serious manifestations of COVID-19 that can compromise life. The impact of the COVID-19 pandemic raises the need to identify the risk factors that determine interindividual variability in susceptibility to SARS-CoV-2 infection, pathophysiology and disease progression. Several authors suggest that the genetic component plays a key role in the complex virus-host interaction, where population differences are responsible for such heterogeneity. Methods: A scoping review of the literature published to date was carried out in order to learn about the biological markers that seem to affect the evolution of the SARS-CoV-2 infection and the genetic polymorphisms of molecules potentially involved in the complex virus-host interaction. Results: Numerous evidences indicate that allelic variants of genes encoding molecules working in the early stages of virus-cell interaction or during events that define the immune response of the host, could favor the infection and/or the disease severity by SARS-CoV-2. The ABO blood group seems to play a role in immunopathogenesis, with group O individuals showing a lower risk of being infected with SARS-CoV-2, although other genetic, physiological and metabolic components of the host, such as the differential expression of toll-like receptors, HLA antigens, proinflammatory cytokines, chemokines or other effectors of the innate and acquired immune response would also be participating. Conclusions: The success and progression of the viral infection towards the development of clinical manifestations and the severity grade depend largely on the interaction between viral factors and the host’s response, as well as seem to be conditioned by epigenetic factors and pre-existing comorbidities. The contribution of the genetic component raises the potential application of targeted preventive strategies, the identification of therapeutic targets and the development of new drugs.

Downloads

Download data is not yet available.

References

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. https://doi.org/10.1016/S0140-6736(20)30566-3.

Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol. 2020;20(7):442-447. https://doi.org/10.1038/s41577-020-0348-8.

Lindesmith L, Moe C, Marionneau S, Ruvoen N, Jiang X, Lindblad L, et al. Human susceptibility and resistance to Norwalk virus infection. Nat Med. 2003;9(5):548-553. https://doi.org/10.1038/nm860.

Boren T, Falk P, Roth K, Larson G, Normark S. Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 1993;262:1892-1895 https://doi.org/10.1126/science.8018146.

Cooling L. Blood groups in infection and host susceptibility. Clin Microbiol Rev. 2015;28(3):801-870. https://doi.org/10.1128/CMR.00109-14.

Batool Z, Durrani SH, Tariq S. Association of ABO and Rh blood group types to hepatitis B, hepatitis C, HIV and syphilis infection, a five year' experience in healthy blood donors in a tertiary care hospital. J Ayub Med Coll Abbottabad. 2017;29(1):90-92.

Fumagalli M, Cagliani R, Pozzoli U, Riva S, Comi GP, Menozzi G, et al. Widespread balancing selection and pathogen-driven selection at blood group antigen genes. Genome Res. 2008;19(2):199-212. https://doi.org/10.1101/gr.082768.108.

Quillent C, Oberlin E, Braun J, Rousset D, Gonzalez-Canali G, Métais P, et al. HIV-1 resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene. Lancet. 1998; 351(9095):14-18. https://doi.org/10.1016/S0140-6736(97)09185-X.

Agostini S, Mancuso R, Guerini FR, D'Alfonso S, Agliardi C, Hernis A, et al. HLA alleles modulate EBV viral load in multiple sclerosis. J Transl Med [Internet]. 2018;16(1):1-9. https://doi.org/10.1186/s12967-018-1450-6.

Julg B, Moodley ES, Qi Y, Ramduth D, Reddy S, Mncube Z, et al. Possession of HLA class II DRB1*1303 associates with reduced viral loads in chronic HIV-1 clade C and B infection. J Infect Dis. 2011;203(6):803-809. https://doi.org/10.1093/infdis/jiq122.

Lim HK, Huang SXL, Chen J, Kerner G, Gilliaux O, Bastard P, et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J Exp Med. 2019;216(9):2038-2056. https://doi.org/10.1084/jem.20181621.

Cheng Y, Cheng G, Chui CH, Lau FY, Chan PKS, Ng MHL, et al. ABO blood group and susceptibility to severe acute respiratory syndrome. JAMA 2005; 293(12):1450-1451. https://doi.org/10.1001/jama.293.12.1450-c.

Zhao J, Yang Y, Huang H, Li D, Gu D, Lu X, et al. Relationship between the ABO blood group and the Coronavirus Disease 2019 (COVID-19) susceptibility. Clin Infect Dis. 2021;73(2):328-331. https://doi.org/10.1093/cid/ciaa1150.

Li J, Wang X, Chen J, Cai Y, Deng A, Yang M. Association between ABO blood groups and risk of SARS-CoV-2 pneumonia. Br J Haematol. 2020;190(1):24-27. https://doi.org/10.1111/bjh.16797.

Jahanafrooz Z, Chen Z, Bao J, Li H, Lipworth L, Guo X. An overview of human proteins and genes involved in SARS- CoV-2 infection. Gene. 2022 15;808:145963. https://doi.org/10.1016/j.gene.2021.145963.

Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, Bujanda L, Buti M, Albillos A, Invernizzi P, et al. Genomewide association study of severe Covid-19 with respiratory failure. N Engl J Med. 2020 Oct 15;383(16):1522-1534. https://doi.org/10.1056/NEJMoa2020283.

COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19. Nature 2021; 600(7889): 472-477. https://doi.org/10.1038/s41586-021-03767-x.

Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature [Internet]. 2020;587(7835):610-612. https://doi.org/10.1038/s41586-020-2818-3.

Bakhshandeh B, Jahanafrooz Z, Abbasi A, Goli MB, Sadeghi M, Mottaqi MS, et al. Mutations in SARS-CoV-2; Consequences in structure, function, and pathogenicity of the virus. Microb Pathog. 2021;154:104831. https://doi.org/10.1016/j.micpath.2021.104831.

Yildirim Z, Sahin OS, Yazar S, Bozok Cetintas V. Genetic and epigenetic factors associated with increased severity of Covid-19. Cell Biol Int. 2021;45(6):1158-1174. https://doi.org/10.1002/cbin.11572

Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-220. https://doi.org/10.1038/s41586-020-2180-5

Lee IH, Lee JW, Kong SW. A survey of genetic variants in SARSCoV-2 interacting domains of ACE2, TMPRSS2 and TLR3/7/8 across populations. Infect Genet Evol. 2020;85:104507. https://doi.org/10.1016/j.meegid.2020.104507.

Lopera Maya EA, van der Graaf A, Lanting P, van der Geest M, Fu J, Swertz M, et al. Lack of association between genetic variants at ACE2 and TMPRSS2 genes involved in SARS-CoV-2 infection and human quantitative phenotypes. Front Genet. 2020;11:1-10. https://doi.org/10.3389/fgene.2020.00613

Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY). 2020;12(11):10087-10098. https://doi.org/10.18632/aging.103415.

Choudhary S, Sreenivasulu K, Mitra P, Misra S, Sharma P. Role of genetic variants and gene expression in the susceptibility and severity of COVID-19. Ann Lab Med. 2020;41(2):129-138. https://doi.org/10.3343/alm.2021.41.2.129.

Chen J, Jiang Q, Xia X, Liu K, Yu Z, Tao W, et al. Individual variation of the SARS-CoV-2 receptor ACE2 gene expression and regulation. Aging Cell. 2020;19(7):1-12. https://doi.org/10.1111/acel.13168

Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020;6(1):4-7. https://doi.org/10.1038/s41421-020-0147-1.

Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA. 2020;323(23):2427-2429. https://doi.org/10.1001/jama.2020.8707.

Bunyavanich S, Grant C, Vicencio A. Racial/Ethnic Variation in nasal gene expression of transmembrane serine protease 2 (TMPRSS2). JAMA - J Am Med Assoc. 2020;324(15):1567-1568. https://doi.org/10.1001/jama.2020.17386.

Bhattacharyya C, Das C, Ghosh A, Singh AK, Mukherjee S, Majumder PP, et al. Global spread of Sars-coV2 subtype with spike protein mutation D614G is shaped by human genomic variations that regulate expression of TMPRSS2 and Mx1 genes. BioRxiv 2020.05.04.075911; https://doi.org/10.1101/2020.05.04.075911.

Klaassen K, Stankovic B, Zukic B, Kotur N, Gasic V, Pavlovic S, et al. Functional prediction and comparative population analysis of variants in genes for proteases and innate immunity related to SARS-CoV-2 infection. Infect Genet Evol. 2020;84: 104498. https://doi.org/10.1016/j.meegid.2020.104498.

Goel R, Bloch EM, Pirenne F, Al-Riyami AZ, Crowe E, Dau L, et al. ABO blood group and COVID-19: a review on behalf of the ISBT COVID-19 Working Group. Vox Sang. 2021;116(8):849-861. https://doi.org/10.1111/vox.13076

Fumagalli M, Cagliani R, Pozzoli U, Riva S, Comi GP, Menozzi G, et al. Widespread balancing selection and pathogendriven selection at blood group antigen genes. Genome Res. 2009;19(2):199-212. https://doi.org/10.1101/gr.082768.108

Zhang XF, Long Y, Tan M, Zhang T, Huang Q, Jiang X, et al. P[8] and P[4] Rotavirus infection associated with secretor phenotypes among children in South China. Sci Rep. 2016;6:34591. https://doi.org/10.1038/srep34591.

Nordgren J, Sharma S, Bucardo F, Nasir W, Günaydin G, Ouermi D, et al. Both lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype-dependent manner. Clin Infect Dis. 2014;59(11):1567-1573. https://doi.org/10.1093/cid/ciu633

Mottram L, Wiklund G, Larson G, Qadri F, Svennerholm AM. FUT2 non-secretor status is associated with altered susceptibility to symptomatic enterotoxigenic Escherichia coli infection in Bangladeshis. Sci Rep. 2017;7(1):10649. https://doi.org/10.1038/s41598-017-10854-5.

Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem [Internet]. 2003;278(16):14112-14120. https://doi.org/10.1074/jbc.M207744200.

Guillon P, Clément M, Sébille V, Rivain JG, Chou CF, Ruvoën-Clouet N, et al. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology. 2008;18(12):1085-1093. https://doi.org/10.1093/glycob/cwn093.

Levi JE, Telles PR, Scrivani H, Campana G. Lack of association between ABO blood groups and susceptibility to SARS-CoV-2 infection. Vox Sang. 2021;116(2):251-252. https://doi.org/10.1111/vox.13015.

Dzik S, Eliason K, Morris EB, Kaufman RM, North CM. COVID-19 and ABO blood groups. Transfusion. 2020;60(8):1883-1884. https://doi.org/10.1111/trf.15946.

Bari A, Ch A, Hareem S, Bano I, Rashid J, Sadiq M. Association of blood groups with the severity and outcome of covid-19 infection in children. J Coll Physicians Surg Pakistan. 2021;31:S57-59. https://doi.org/10.29271/jcpsp.2021.01.S57.

Kikkert M. Innate immune evasion by human respiratory RNA viruses. J Innate Immun. 2020;12(1):4-20. https://doi.org/10.1159/000503030.

Van Der Made CI, Simons A, Schuurs-Hoeijmakers J, Van Den Heuvel G, Mantere T, Kersten S, et al. Presence of genetic variants among young men with severe COVID-19. JAMA - J Am Med Assoc. 2020;324(7):663-673. https://doi.org/10.1001/jama.2020.13719.

Anastassopoulou C, Gkizarioti Z, Patrinos GP, Tsakris A. Human genetic factors associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity. Hum Genomics. 2020;14(1):1-8. https://doi.org/10.1186/s40246-020-00290-4.

Schurz H, Salie M, Tromp G, Hoal EG, Kinnear CJ, Möller M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum Genomics. 2019;13(1):2. https://doi.org/10.1186/s40246-018-0185-z.

Zhang Q, Liu Z, Moncada-Velez M, Chen J, Ogishi M, Bigio B, et al. Inborn errors of type I IFN immunity in patients with lifethreatening COVID-19. Science 2020;370(6515):eabd4570. https://doi.org/10.1126/science.abd4570.

Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Møller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-1045.e9. https://doi.org/10.1016/j.cell.2020.04.026

Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92-98. https://doi.org/10.1038/s41586-020-03065-y.

Kadkhoda K. COVID-19: an Immunopathological View. mSphere. 2020;5(2):19-22. https://doi.org/10.1128/mSphere.00344-20.

Kim YC, Jeong BH. Strong correlation between the case fatality rate of covid-19 and the rs6598045 single nucleotide polymorphism (SNP) of the interferon-induced transmembrane protein 3 (IFITM3) gene at the population-level. Genes (Basel). 2021;12(1): 2021;12(1):42. https://doi.org/10.3390/genes12010042.

Tavasolian F, Rashidi M, Hatam GR, Jeddi M, Hosseini AZ, Mosawi SH, et al. HLA, Immune response, and susceptibility to COVID-19. Front Immunol 2021;11:601886. https://doi.org/10.3389/fimmu.2020.601886.

Initiative C-19 HG. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur J Hum Genet. 2020;28(6):715-718. https://doi.org/10.1038/s41431-020-0636-6.

Nguyen A, David JK, Maden SK, Wood MA, Weeder BR, Nellore A, et al. Human leukocyte antigen susceptibility map for SARS-CoV-2. J Virol [Internet]. 2020;94(13):1-12. https://doi.org/10.1101/2020.03.22.20040600

Wang W, Zhang W, Zhang J, He J, Zhu F. Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus disease-2019 (COVID-19). Hla. 2020;96(2):194-196. https://doi.org/10.1111/tan.13941.

Wang F, Huang S, Gao R, Zhou Y, Lai C, Li Z, et al. Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. Cell Discov [Internet]. 2020;6(1). https://doi.org/10.1038/s41421-020-00231-4.

Lorente L, Martín MM, Franco A, Barrios Y, Cáceres JJ, SoléViolán J, et al. HLA genetic polymorphisms and prognosis of patients with COVID-19. Med Intensiva. 2021;45(2):96-103. https://doi.org/10.1016/j.medin.2020.08.004.

Cardenas A, Rifas-Shiman SL, Sordillo JE, DeMeo DL, Baccarelli AA, Hivert MF, et al. DNA methylation architecture of the ACE2 gene in nasal cells of children. Sci Rep [Internet]. 2021;11(1):1-9. https://doi.org/10.1038/s41598-021-86494-7.

Castro de Moura M, Davalos V, Planas-Serra L, Alvarez-Errico D, Arribas C, Ruiz M, et al. Epigenome-wide association study of COVID-19 severity with respiratory failure. EBioMedicine. 2021;66:1-10. https://doi.org/10.1016/j.ebiom.2021.103339.

Published

2022-02-16

How to Cite

Vizzi, E., Ramírez, V., Rosales, R. E., Zambrano, J. L., & Fernández-Mestre, M. (2022). Host genetic factors involved in the susceptibility and severity of COVID-19. Salus, 25(3), 32–38. https://doi.org/10.54139/salus.v25i3.130